Displaying all 4 publications

Abstract:
Sort:
  1. Eaton BT, Broder CC, Wang LF
    Curr Mol Med, 2005 Dec;5(8):805-16.
    PMID: 16375714
    Within the past decade a number of new zoonotic paramyxoviruses emerged from flying foxes to cause serious disease outbreaks in man and livestock. Hendra virus was the cause of fatal infections of horses and man in Australia in 1994, 1999 and 2004. Nipah virus caused encephalitis in humans both in Malaysia in 1998/99, following silent spread of the virus in the pig population, and in Bangladesh from 2001 to 2004 probably as a result of direct bat to human transmission and spread within the human population. Hendra and Nipah viruses are highly pathogenic in humans with case fatality rates of 40% to 70%. Their genetic constitution, virulence and wide host range make them unique paramyxoviruses and they have been given Biosecurity Level 4 status in a new genus Henipavirus within the family Paramyxoviridae. Recent studies on the virulence, host range and cell tropisms of henipaviruses provide insights into the unique biological properties of these emerging human pathogens and suggest approaches for vaccine development and therapeutic countermeasures.
    Matched MeSH terms: Henipavirus Infections/therapy*
  2. Ong KC, Wong KT
    Brain Pathol, 2015 Sep;25(5):605-13.
    PMID: 26276024 DOI: 10.1111/bpa.12278
    The genus Henipavirus within the family Paramyxoviridae includes the Hendra virus (HeV) and Nipah virus (NiV) which were discovered in the 1990s in Australia and Malaysia, respectively, after emerging to cause severe and often fatal outbreaks in humans and animals. While HeV is confined to Australia, more recent NiV outbreaks have been reported in Bangladesh, India and the Philippines. The clinical manifestations of both henipaviruses in humans appear similar, with a predominance of an acute encephalitic syndrome. Likewise, the pathological features are similar and characterized by disseminated, multi-organ vasculopathy comprising endothelial infection/ulceration, vasculitis, vasculitis-induced thrombosis/occlusion, parenchymal ischemia/microinfarction, and parenchymal cell infection in the central nervous system (CNS), lung, kidney and other major organs. This unique dual pathogenetic mechanism of vasculitis-induced microinfarction and neuronal infection causes severe tissue damage in the CNS. Both viruses can also cause relapsing encephalitis months and years after the acute infection. Many animal models studied to date have largely confirmed the pathology of henipavirus infection, and provided the means to test new therapeutic agents and vaccines. As the bat is the natural host of henipaviruses and has worldwide distribution, spillover events into human populations are expected to occur in the future.
    Matched MeSH terms: Henipavirus Infections/therapy
  3. Ochani RK, Batra S, Shaikh A, Asad A
    Infez Med, 2019 Jun 01;27(2):117-127.
    PMID: 31205033
    The Nipah virus was discovered twenty years ago, and there is considerable information available regarding the specificities surrounding this virus such as transmission, pathogenesis and genome. Belonging to the Henipavirus genus, this virus can cause fever, encephalitis and respiratory disorders. The first cases were reported in Malaysia and Singapore in 1998, when affected individuals presented with severe febrile encephalitis. Since then, much has been identified about this virus. These single-stranded RNA viruses gain entry into target cells via a process known as macropinocytosis. The viral genome is released into the cell cytoplasm via a cascade of processes that involves conformational changes in G and F proteins which allow for attachment of the viral membrane to the cell membrane. In addition to this, the natural reservoirs of this virus have been identified to be fruit bats from the genus Pteropus. Five of the 14 species of bats in Malaysia have been identified as carriers, and this virus affects horses, cats, dogs, pigs and humans. Various mechanisms of transmission have been proposed such as contamination of date palm saps by bat feces and saliva, nosocomial and human-to-human transmissions. Physical contact was identified as the strongest risk factor for developing an infection in the 2004 Faridpur outbreak. Geographically, the virus seems to favor the Indian sub-continent, Indonesia, Southeast Asia, Pakistan, southern China, northern Australia and the Philippines, as demonstrated by the multiple outbreaks in 2001, 2004, 2007, 2012 in Bangladesh, India and Pakistan as well as the initial outbreaks in Malaysia and Singapore. Multiple routes of the viremic spread in the human body have been identified such as the central nervous system (CNS) and respiratory system, while virus levels in the body remain low, detection in the cerebrospinal fluid is comparatively high. The virus follows an incubation period of 4 days to 2 weeks which is followed by the development of symptoms. The primary clinical signs include fever, headache, vomiting and dizziness, while the characteristic symptoms consist of segmental myoclonus, tachycardia, areflexia, hypotonia, abnormal pupillary reflexes and hypertension. The serum neutralization test (SNT) is the gold standard of diagnosis followed by ELISA if SNT cannot be carried out. On the other hand, treatment is supportive since there a lack of effective pharmacological therapy and only one equine vaccine is currently licensed for use. Prevention of outbreaks seems to be a more viable approach until specific therapeutic strategies are devised.
    Matched MeSH terms: Henipavirus Infections/therapy
  4. Thakur N, Bailey D
    Microbes Infect, 2019;21(7):278-286.
    PMID: 30817995 DOI: 10.1016/j.micinf.2019.02.002
    Nipah virus is an emerging zoonotic paramyxovirus that causes severe and often fatal respiratory and neurological disease in humans. The virus was first discovered after an outbreak of encephalitis in pig farmers in Malaysia and Singapore with subsequent outbreaks in Bangladesh or India occurring almost annually. Due to the highly pathogenic nature of NiV, its pandemic potential, and the lack of licensed vaccines or therapeutics, there is a requirement for research and development into highly sensitive and specific diagnostic tools as well as antivirals and vaccines to help prevent and control future outbreak situations.
    Matched MeSH terms: Henipavirus Infections/therapy
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links