Displaying all 2 publications

Abstract:
Sort:
  1. Jarrar QB, Hakim MN, Cheema MS, Zakaria ZA
    Ultrastruct Pathol, 2017 8 23;41(5):335-345.
    PMID: 28829237 DOI: 10.1080/01913123.2017.1349850
    Mefenamic acid (MFA) is used as an anti-inflammatory, antinociceptive, and antipyretic agent for treatment of a wide range of pathological disorders. While the uncertainty of its safety and the poor oral bioavailability constitute the major limiting factors of its medical use, considerable efforts including liposomal encapsulation are needed to achieve maximum therapeutic advantages. The current work was conducted to investigate the ultrastructural alterations in the liver induced by free MFA and its liposomal preparation. Female Sprague-Dawley rats were treated with daily oral doses of either free MFA or MFA entrapped in Tween 80 inoculated liposomes at the concentration of 80 mg/kg for 28 days. Ultrathin sections were prepared from biopsies taken from the liver of each member of all animals under study and subjected to examination by transmission electron microscopy. The liver of rats that were exposed to liposomal MFA showed more ultrastructural alterations than the rats treated with the free drug. While both groups of rats demonstrated sinusoidal dilatation, Kupffer cell hyperplasia, mitochondrial damage, and nuclear alterations, rats treated with liposome-encapsulated MFA induced an increase in the multiple lysosomes formation, hepatocytic steatosis, and apoptotic activity than free MFA-treated rats. The ultrastructural findings of the present study indicate that the use of liposomal MFA induces more hepatic damage than the use of free MFA.
    Matched MeSH terms: Hepatocytes/ultrastructure*
  2. Mamikutty N, Thent ZC, Haji Suhaimi F
    Biomed Res Int, 2015;2015:895961.
    PMID: 26273656 DOI: 10.1155/2015/895961
    BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is one of the complications of the metabolic syndrome. It encompasses a wide range of disease spectrum from simple steatosis to liver cirrhosis. Structural alteration of hepatic mitochondria might be involved in the pathogenesis of NAFLD.

    AIMS: In the present study, we used a newly established model of fructose-induced metabolic syndrome in male Wistar rats in order to investigate the ultrastructural changes in hepatic mitochondria that occur with fructose consumption and their association with NAFLD pathogenesis.

    METHODS: The concentration of fructose-drinking water (FDW) used in this study was 20%. Six male Wistar rats were supplemented with FDW 20% for eight weeks. Body composition and metabolic parameters were measured before and after 8 weeks of FDW 20%. Histomorphology of the liver was evaluated and ultrastructural changes of mitochondria were assessed with transmission electron micrograph.

    RESULTS: After 8 weeks of fructose consumption, the animals developed several features of the metabolic syndrome. Moreover, fructose consumption led to the development of macrovesicular hepatic steatosis and mitochondrial ultrastructural changes, such as increase in mitochondrial size, disruption of the cristae, and reduction of matrix density.

    CONCLUSION: We conclude that in male Wistar rat 8-week consumption of FDW 20% leads to NAFLD likely via mitochondrial structural alteration.

    Matched MeSH terms: Hepatocytes/ultrastructure
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links