Displaying all 3 publications

Abstract:
Sort:
  1. Abdul Razak S, Scribner KT
    Appl Environ Microbiol, 2020 05 05;86(10).
    PMID: 32169941 DOI: 10.1128/AEM.02662-19
    Gastrointestinal (GI) or gut microbiotas play essential roles in host development and physiology. These roles are influenced partly by the microbial community composition. During early developmental stages, the ecological processes underlying the assembly and successional changes in host GI community composition are influenced by numerous factors, including dispersal from the surrounding environment, age-dependent changes in the gut environment, and changes in dietary regimes. However, the relative importance of these factors to the gut microbiota is not well understood. We examined the effects of environmental (diet and water sources) and host early ontogenetic development on the diversity of and the compositional changes in the gut microbiota of a primitive teleost fish, the lake sturgeon (Acipenser fulvescens), based on massively parallel sequencing of the 16S rRNA gene. Fish larvae were raised in environments that differed in water source (stream versus filtered groundwater) and diet (supplemented versus nonsupplemented Artemia fish). We quantified the gut microbial community structure at three stages (prefeeding and 1 and 2 weeks after exogenous feeding began). The diversity declined and the community composition differed significantly among stages; however, only modest differences associated with dietary or water source treatments were documented. Many taxa present in the gut were over- or underrepresented relative to neutral expectations in each sampling period. The findings indicate dynamic relationships between the gut microbiota composition and host gastrointestinal physiology, with comparatively smaller influences being associated with the rearing environments. Neutral models of community assembly could not be rejected, but selectivity associated with microbe-host GI tract interactions through early ontogenetic stages was evident. The results have implications for sturgeon conservation and aquaculture production specifically and applications of microbe-based management in teleost fish generally.IMPORTANCE We quantified the effects of environment (diet and water sources) and host early ontogenetic development on the diversity of and compositional changes in gut microbial communities based on massively parallel sequencing of the 16S rRNA genes from the GI tracts of larval lake sturgeon (Acipenser fulvescens). The gut microbial community diversity declined and the community composition differed significantly among ontogenetic stages; however, only modest differences associated with dietary or water source treatments were documented. Selectivity associated with microbe-host GI tract interactions through early ontogenetic stages was evident. The results have implications for lake sturgeon and early larval ecology and survival in their natural habitat and for conservation and aquaculture production specifically, as well as applications of microbe-based management in teleost fish generally.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing/veterinary
  2. Sosa Portugal S, Cortey M, Tello M, Casanovas C, Mesonero-Escuredo S, Barrabés S, et al.
    Transbound Emerg Dis, 2021 Mar;68(2):519-530.
    PMID: 32619306 DOI: 10.1111/tbed.13709
    The present study was aimed to assess the diversity of influenza A viruses (IAV) circulating in pig farms in the Iberian Peninsula. The study included two different situations: farms suffering respiratory disease outbreaks compatible with IAV (n = 211) and randomly selected farms without overt respiratory disease (n = 19). Initially, the presence of IAV and lineage determination was assessed by qRT-PCR using nasal swabs. IAV was confirmed in 145 outbreaks (68.7%), mostly in nurseries (53/145; 36.5%). Subtyping by RT-qPCR was possible in 94 of those cases being H1avN2hu (33.6%), H1avN1av (24.3%) and H1huN2hu (18.7%), the most common lineages. H3huN2hu and H1pdmN1pdm represented 7.5% and 6.5% of the cases, respectively. As for the randomly selected farms, 15/19 (78.9%) were positive for IAV. Again, the virus was mostly found in nurseries and H1avN2hu was the predominant lineage. Virus isolation in MDCK cells was attempted from positive cases. Sixty of the isolates were fully sequenced with Illumina MiSeq®. Within those 60 isolates, the most frequent genotypes had internal genes of avian origin, and these were D (19/60; 31.7%) and A (11/60; 18.3%), H1avN2hu and H1avN1av, respectively. In addition, seven previously unreported genotypes were identified. In two samples, more than one H or N were found and it was not possible to precisely establish their genotypes. A great diversity was observed in the phylogenetic analysis. Notably, four H3 sequences clustered with human isolates from 2004-05 (Malaysia and Denmark) that were considered uncommon in pigs. Overall, this study indicates that IAV is a very common agent in respiratory disease outbreaks in Spanish pig farms. The genetic diversity of this virus is continuously expanding with clear changes in the predominant subtypes and lineages in relatively short periods of time. The current genotyping scheme has to be enlarged to include the new genotypes that could be found in the future.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing/veterinary
  3. Homonnay ZG, Kovács EW, Bányai K, Albert M, Fehér E, Mató T, et al.
    Avian Pathol, 2014;43(6):552-60.
    PMID: 25299764 DOI: 10.1080/03079457.2014.973832
    A neurological disease of young Pekin ducks characterized by ataxia, lameness, and paralysis was observed at several duck farms in Malaysia in 2012. Gross pathological lesions were absent or inconsistent in most of the cases, but severe and consistent microscopic lesions were found in the brain and spinal cord, characterized by non-purulent panencephalomyelitis. Several virus isolates were obtained in embryonated duck eggs and in cell cultures (Vero and DF-1) inoculated with the brain homogenates of affected ducks. After exclusion of other viruses, the isolates were identified as a flavivirus by flavivirus-specific reverse transcription-polymerase chain reaction (RT-PCR) assays. Inoculation of 2-week-old Pekin ducks with a flavivirus isolate by the subcutaneous or intramuscular route resulted in typical clinical signs and histological lesions in the brain and spinal cord. The inoculated virus was detected by RT-PCR from organ samples of ducks with clinical signs and histological lesions. With a few days delay, the disease was also observed among co-mingled contact control birds. Phylogenetic analysis of NS5 and E gene sequences proved that the isolates were representatives of a novel phylogenetic group within clade XI (Ntaya virus group) of the Flavivirus genus. This Malaysian Duck Tembusu Virus (DTMUV), named Perak virus, has moderate genomic RNA sequence similarity to a related DTMUV identified in China. In our experiment the Malaysian strain of DTMUV could be transmitted in the absence of mosquito vectors. These findings may have implications for the control and prevention of this emerging group of flaviviruses.
    Matched MeSH terms: High-Throughput Nucleotide Sequencing/veterinary
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links