Displaying all 2 publications

Abstract:
Sort:
  1. Balasubramaniam SD, Balakrishnan V, Oon CE, Kaur G
    Medicina (Kaunas), 2019 Jul 17;55(7).
    PMID: 31319555 DOI: 10.3390/medicina55070384
    Cervical cancer is the fourth most common cancer among women. Infection by high-risk human papillomavirus (HPV) is the main aetiology for the development of cervical cancer. Infection by high-risk human papillomavirus (HPV) and the integration of the HPV genome into the host chromosome of cervical epithelial cells are key early events in the neoplastic progression of cervical lesions. The viral oncoproteins, mainly E6 and E7, are responsible for the initial changes in epithelial cells. The viral proteins inactivate two main tumour suppressor proteins, p53, and retinoblastoma (pRb). Inactivation of these host proteins disrupts both the DNA repair mechanisms and apoptosis, leading to rapid cell proliferation. Multiple genes involved in DNA repair, cell proliferation, growth factor activity, angiogenesis, as well as mitogenesis genes become highly expressed in cervical intraepithelial neoplasia (CIN) and cancer. This genomic instability encourages HPV-infected cells to progress towards invasive carcinoma. The key molecular events involved in cervical carcinogenesis will be discussed in this review.
    Matched MeSH terms: Human papillomavirus 18/pathogenicity
  2. Gandhi S, Nor Rashid N, Mohamad Razif MF, Othman S
    Mol Biol Rep, 2021 Jun;48(6):5121-5133.
    PMID: 34169395 DOI: 10.1007/s11033-021-06509-4
    The High-Risk Human Papillomaviruses (HR-HPVs) 16 and 18 are known to cause cervical cancer, which is primarily attributed to E6 and E7 oncoproteins. In addition, recent studies have focused on the vital role of the p130 pocket protein as an oncosuppressor to limit the expression of E2F transcription factors required for cell cycle progression. In view of this, the current study was conducted to investigate the mechanism by which transfection with HPV16/18 E7 leads to the deregulation of the host cell cycle, altering the localisation of p130, and expression of differentiation genes in Human Keratinocytes (HaCaT) cells. Co-immunoprecipitation, Western blot analysis, immunofluorescence microscopy, flow cytometry, quantitative-Polymerase Chain Reaction (qPCR), and the inhibition of p130 by MG132 inhibitor were employed to investigate the loss of p130 and its disruption in HPV 16/18 E7-transfected HaCaT cells. The HPV16- and HPV18-transformed cells, known as CaSki and HeLa, respectively, were also used to complement the ectopic expressions of E7 in HaCaT cells. Normal keratinocytes displayed higher level of p130 expression than HPV-transformed cells. In addition, the immunofluorescence analysis revealed that both HPV 16/18 E7-transfected HaCaT and HPV-transformed cells exhibited higher level of cytoplasmic p130 compared to nuclear p130. A significant increase in the number of S/G2 phase cells in HPV-transformed cells was also recorded since E7 has been shown to stimulate proliferation through the deactivation of Retinoblastoma Protein (pRB)-dependent G1/S checkpoint. Furthermore, the findings recorded the down-regulation of keratinocyte differentiation markers, namely p130, keratin10, and involucrin. The proteasomal degradation of the exported p130 confirmed the cellular localisation pattern of p130, which was commonly observed in cancerous cells. The findings provide strong evidence that the localisation of nuclear p130 nuclear was disrupted by HPV16/18 E7 led to the deregulation of the cell cycle and the impairment of cellular differentiation ultimately lead to cellular transformation.
    Matched MeSH terms: Human papillomavirus 18/pathogenicity
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links