Displaying all 5 publications

Abstract:
Sort:
  1. Chelliah KK, Tamanang S, Bt Elias LS, Ying KY
    Indian J Med Sci, 2013 11 2;67(1-2):23-8.
    PMID: 24178338
    BACKGROUND: Two digital mammography systems, based on different physical concepts, have been introduced in the last few years namely the full-field digital mammography (FFDM) system and computed radiography-based mammography using digital storage phosphor plate (DSPM).

    AIMS: The objective of this study was to compare the image quality for DSPM and FFDM using a grading scale based on previously published articles.

    MATERIALS AND METHODS: This comparative diagnostic study was done for 5-month duration at the Breast Clinic. The system used was the Lorad Selenia FFDM system and the Mammomat 3000 Nova DSPM system. The craniocaudal and mediolateral oblique projections were done on both breast on 58 asymptomatic women using both DSPM and FFDM. The mammograms were evaluated for eight criteria of image quality: Tissue coverage, compression, exposure, contrast, resolution, noise, artifact, and sharpness by two independent radiologists.

    STATISTICAL ANALYSIS: Wilcoxon Signed Rank Test and Weighted Kappa.

    RESULTS: FFDM was rated significantly better (P < 0.05) for five aspects: Tissue coverage, compression, contrast, exposure, and resolution and equal to DSPM for sharpness, noise, and artifact.

    CONCLUSION: FFDM was superior in five aspects and equal to DSPM for three aspects of image quality.

    Matched MeSH terms: Radiographic Image Enhancement/instrumentation
  2. Rahman HA, Che Ani AI, Harun SW, Yasin M, Apsari R, Ahmad H
    J Biomed Opt, 2012 Jul;17(7):071308.
    PMID: 22894469 DOI: 10.1117/1.JBO.17.7.071308
    The purpose of this study is to investigate the potential of intensity modulated fiber optic displacement sensor scanning system for the imaging of dental cavity. Here, we discuss our preliminary results in the imaging of cavities on various teeth surfaces, as well as measurement of the diameter of the cavities which are represented by drilled holes on the teeth surfaces. Based on the analysis of displacement measurement, the sensitivities and linear range for the molar, canine, hybrid composite resin, and acrylic surfaces are obtained at 0.09667 mV/mm and 0.45 mm; 0.775 mV/mm and 0.4 mm; 0.5109 mV/mm and 0.5 mm; and 0.25 mV/mm and 0.5 mm, respectively, with a good linearity of more than 99%. The results also show a clear distinction between the cavity and surrounding tooth region. The stability, simplicity of design, and low cost of fabrication make it suitable for restorative dentistry.
    Matched MeSH terms: Image Enhancement/instrumentation*
  3. Soh HS, Ung NM, Ng KH
    Australas Phys Eng Sci Med, 2008 Jun;31(2):146-50.
    PMID: 18697706
    The advancement of digital imaging has prompted more medical institutions to go filmless. The computed radiography (CR) system is becoming an important tool not only in diagnostic imaging, but also in radiation oncology. A new CR system that was specially designed for the use in radiation oncology, Fuji IP cassette type PII has been introduced to the market in the middle of year 2006. This project aimed to study some basic physical characteristics of this new type of cassette and explore its application for performing quality assurance (QA) tests and portal imaging in radiotherapy. All the images were read by FCR 5000 Plus reader. The image was found to reach its saturation value of 1023 (due to the image was stored in 10 bits data) by depending on the sensitivity value being adjusted. The uniformity test gave the result of 0.12%. The cassette was used to perform the QA tests which were previously performed using film. All the results met the specification as stated in AAPM Task Group 40. The comparison for the portal images of PortalVision contrast-detail phantom showed that the spatial resolution of the images obtained by CR system (Fujifilm Co., Ltd., Tokyo, Japan) were better than the EPID (Varian Medical Systems, Inc., Palo Alto, USA) and film system (Eastman Kodak Co., New York, USA). The IP cassette type PII was found to be suitable as an alternative QA test tool and portal imaging in radiotherapy.
    Matched MeSH terms: Radiographic Image Enhancement/instrumentation*
  4. Jamil A, Mohd MI, Zain NM
    Radiat Prot Dosimetry, 2018 Dec 01;182(4):413-418.
    PMID: 29767799 DOI: 10.1093/rpd/ncy082
    After years of establishment of computed radiography (CR) and digital radiography (DR), manufacturers have introduced exposure indicator/index (EI) as a feedback mechanism for patient dose. However, EI consistency is uncertain for CR. Most manufacturers recommended EI values in a range of numbers for all examination, instead of giving the exact range for a specific body part, raising a concern of inappropriate exposure given to the patient in clinical practice. The aims of this study were to investigate the EI consistency in DR systems produced in constant exposure parameters and clinical condition, and to determine the interaction between the anatomical part and EI. A phantom study of skull, chest, abdomen and hand was carried out and four systems were used for comparison-Fuji CR, Carestream CR, Siemens DR and Carestream DR. For each projection, the phantom positioning and exposure parameters were set according to the standard clinical practice. All exposure parameters and clinical conditions were kept constant. Twenty (20) exposures were taken for each projection and the EI was recorded. Findings showed that EI is not consistent in DR systems despite constant exposure parameters and clinical condition except in Siemens DR, through skull examination. Statistical analysis showed a significant interaction between anatomical parts and EI values (P < 0.05). EI alone was proven to be less reliable to provide technologist a correct feedback on exposure level. The interaction between anatomical parts and EI values intensifies the need for an anatomical-specific EI values set by all manufacturers for accurate feedback on the exposure parameters used and the detector entrance dose.
    Matched MeSH terms: Radiographic Image Enhancement/instrumentation*
  5. Masoomi MA, Al-Shammeri I, Kalafallah K, Elrahman HMA, Ragab O, Ahmed E, et al.
    Medicine (Baltimore), 2019 Jan;98(4):e14207.
    PMID: 30681596 DOI: 10.1097/MD.0000000000014207
    Many discrepancy in selection of proper filter and its parameters for individual cases exists. The authors investigate the impact of the most common filters on patient NM images with coronary artery disease (CAD), and compare the results with the computerized tomography (CT)-Angio and angiography for accuracy.The investigation initiated by performing various single photon emission computerized tomography (SPECT)/CT scan of the national electrical manufacturers association chest phantoms having hot and cold inserts. Data acquired on GE 670 PRO SPECT/CT; 360Ø, 64 frames, 60 seconds, low energy high resolution (LEHR) 128, low energy general purpose (LEGP) with CT attenuation (120 kV and 170 mA). The images reconstructed with filtered back projection and ITERATIVE ordered-subset expectation maximization utilizing filters; Hann, Butterworth, Metz, Hamming, and Wiener. The Image contrast was calculated to assess absolute nearness of the inserts. Based on the preliminary results, then scans of 92 patients with CAD; 64 males and 28 females, age 41 to 77 years old, who had been reported earlier reprocessed with the nominated filter and were reported by 2 NM expert. The results compared to the earlier reports and to the CT-Angio and angiography.The optimization suggested 3 filters; Wiener (Wi), Metz and Butterworth (But) provide the highest contrast (99- 66.4%) and (81- 32%) for the cold and hot inserts respectively, with the (Wi) filter to be the better option. The reprocessed patients scan with the (Wi) presented an elevated diagnostic accuracy, correlated well with the CT-Angio and angiography results (P 
    Matched MeSH terms: Radiographic Image Enhancement/instrumentation*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links