Displaying all 3 publications

Abstract:
Sort:
  1. Ahmad AL, Low SC, Shukor SR, Ismail A
    J Immunoassay Immunochem, 2012 Jan;33(1):48-58.
    PMID: 22181820 DOI: 10.1080/15321819.2011.591479
    This study was aimed at gaining a quantitative understanding of the effect of protein quantity and membrane pore structure on protein immobilization. The concentration of immobilized protein was measured by staining with Ponceau S and measuring its color intensity. In this study, both membrane morphology and the quantity of deposited protein significantly influenced the quantity of protein immobilization on the membrane surface. The sharpness and intensity of the red protein spots varied depending on the membrane pore structure, indicating a dependence of protein immobilization on this factor. Membranes with smaller pores resulted in a higher color density, corresponding to enhanced protein immobilization and an increased assay sensitivity level. An increased of immobilized volume has a significant jagged outline on the protein spot but, conversely, no difference in binding capacity.
    Matched MeSH terms: Immobilized Proteins/immunology
  2. Ch'ng ACW, Konthur Z, Lim TS
    Methods Enzymol, 2020;630:159-178.
    PMID: 31931984 DOI: 10.1016/bs.mie.2019.10.023
    Directed evolution is a proven approach to fine tune or modify biomolecules for various applications ranging from research to industry. The process of evolution requires methods that are capable of not only generating genetic diversity but also to distinguish the variants of desired characteristics. One method that is synonymous with directed evolution of proteins is phage display. Here, we present a protocol describing the application of magnetic nanoparticles coupled with a processor to carry out the identification of monoclonal antibodies (mAbs) from a diverse antibody library via phage display. Target antigens are coupled to magnetic nanoparticles as the solid phase for the isolation of the binding mAbs via affinity. A gradual enrichment in clones would result in increasing ELISA readouts with increasing rounds of panning. During monoclonal level analysis, positivity can be deduced with comparison to background and controls. The biopanning process can also be adopted for the directed evolution of enzymes, scaffold proteins or even peptides.
    Matched MeSH terms: Immobilized Proteins/immunology
  3. Lim CS, Goh SL, Kariapper L, Krishnan G, Lim YY, Ng CC
    Clin Chim Acta, 2015 Aug 25;448:206-10.
    PMID: 26164385 DOI: 10.1016/j.cca.2015.07.008
    Development of indirect enzyme-linked immunosorbent assays (ELISAs) often utilizes synthetic peptides or recombinant proteins from Escherichia coli as immobilized antigens. Because inclusion bodies (IBs) formed during recombinant protein expression in E. coli are commonly thought as misfolded aggregates, only refolded proteins from IBs are used to develop new or in-house diagnostic assays. However, the promising utilities of IBs as nanomaterials and immobilized enzymes as shown in recent studies have led us to explore the potential use of IBs of recombinant Epstein-Barr virus viral capsid antigen p18 (VCA p18) as immobilized antigens in ELISAs for serologic detection of nasopharyngeal carcinoma (NPC).
    Matched MeSH terms: Immobilized Proteins/immunology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links