Displaying all 5 publications

Abstract:
Sort:
  1. Hutchinson PJ, Kolias AG, Tajsic T, Adeleye A, Aklilu AT, Apriawan T, et al.
    Acta Neurochir (Wien), 2019 Jul;161(7):1261-1274.
    PMID: 31134383 DOI: 10.1007/s00701-019-03936-y
    BACKGROUND: Two randomised trials assessing the effectiveness of decompressive craniectomy (DC) following traumatic brain injury (TBI) were published in recent years: DECRA in 2011 and RESCUEicp in 2016. As the results have generated debate amongst clinicians and researchers working in the field of TBI worldwide, it was felt necessary to provide general guidance on the use of DC following TBI and identify areas of ongoing uncertainty via a consensus-based approach.

    METHODS: The International Consensus Meeting on the Role of Decompressive Craniectomy in the Management of Traumatic Brain Injury took place in Cambridge, UK, on the 28th and 29th September 2017. The meeting was jointly organised by the World Federation of Neurosurgical Societies (WFNS), AO/Global Neuro and the NIHR Global Health Research Group on Neurotrauma. Discussions and voting were organised around six pre-specified themes: (1) primary DC for mass lesions, (2) secondary DC for intracranial hypertension, (3) peri-operative care, (4) surgical technique, (5) cranial reconstruction and (6) DC in low- and middle-income countries.

    RESULTS: The invited participants discussed existing published evidence and proposed consensus statements. Statements required an agreement threshold of more than 70% by blinded voting for approval.

    CONCLUSIONS: In this manuscript, we present the final consensus-based recommendations. We have also identified areas of uncertainty, where further research is required, including the role of primary DC, the role of hinge craniotomy and the optimal timing and material for skull reconstruction.

    Matched MeSH terms: Intracranial Hypertension/etiology
  2. Al-Namnam NMN, Hariri F, Rahman ZAA
    Br J Oral Maxillofac Surg, 2018 06;56(5):353-366.
    PMID: 29661509 DOI: 10.1016/j.bjoms.2018.03.002
    Our aim was to summarise current published evidence about the prognosis of various techniques of craniofacial distraction osteogenesis, particularly its indications, protocols, and complications. Published papers were acquired from online sources using the keywords "distraction osteogenesis", "Le Fort III", "monobloc", and "syndromic craniosynostosis" in combination with other keywords, such as "craniofacial deformity" and "midface". The search was confined to publications in English, and we followed the guidelines of the PRISMA statement. We found that deformity of the skull resulted mainly from Crouzon syndrome. Recently craniofacial distraction has been achieved by monobloc distraction osteogenesis using an external distraction device during childhood, while Le Fort III distraction osteogenesis was used in maturity. Craniofacial distraction was indicated primarily to correct increased intracranial pressure, exorbitism, and obstructive sleep apnoea in childhood, while midface hypoplasia was the main indication in maturity. Overall the most commonly reported complications were minor inflammatory reactions around the pins, and anticlockwise rotation when using external distraction systems. The mean amount of bony advancement was 12.3mm for an external device, 18.6mm for an internal device and 18.7mm when both external and internal devices were used. Treatment by craniofacial distraction must be validated by long-term studies as there adequate data are lacking, particularly about structural relapse and the assessment of function.
    Matched MeSH terms: Intracranial Hypertension/etiology
  3. Nujaimin U, Saufi A, Rahman AG, Badrisyah I, Sani S, Zamzuri I, et al.
    Asian J Surg, 2009 Jul;32(3):157-62.
    PMID: 19656755
    This was a prospective cohort study, carried out in the Neuro Intensive Care Unit, Department of Neurosciences, Hospital Universiti Sains Malaysia, Kubang Kerian Kelantan. The study was approved by the local ethics committee and was conducted between November 2005 and September 2007 with a total of 30 patients included in the study. In our study, univariate analysis showed a statistically significant relationship between mean intracranial pressure (ICP) as well as cerebral perfusion pressure (CPP) with both states of basal cistern and the degree of diffuse injury and oedema based on the Marshall classification system. The ICP was higher while CPP and compliance were lower whenever the basal cisterns were effaced in cases of cerebral oedema with Marshall III and IV. In comparison, the study revealed lower ICP, higher mean CPP and better mean cerebral compliance if the basal cisterns were opened or the post operative CT brain scan showed Marshall I and II. These findings suggested the surgical evacuation of clots to reduce the mass volume and restoration of brain anatomy may reduce vascular engorgement and cerebral oedema, therefore preventing intracranial hypertension, and improving cerebral perfusion pressure and cerebral compliance. Nevertheless the study did not find any significant relationship between midline shifts and mean ICP, CPP or cerebral compliance even though lower ICP, higher CPP and compliance were frequently observed when the midline shift was less than 0.5 cm. As the majority of our patients had multiple and diffuse brain injuries, the absence of midline shift did not necessarily mean lower ICP as the pathology was bilateral and even when after excluding the multiple lesions, the result remained insignificant. We assumed that the CT brain scan obtained after evacuation of the mass lesion to assess the state basal cistern and classify the diffuse oedema may prognosticate the intracranial pressure and cerebral perfusion pressure thus assisting in the acute post operative management of severely head injured patients. Hence post operative CT brain scans may be done to verify the ICP and CPP readings postoperatively. Subsequently, withdrawal of sedation for neurological assessment after surgery could be done if the CT brain scan showed an opened basal cistern and Marshall I and II coupled with ICP of less than 20 mmHg.
    Matched MeSH terms: Intracranial Hypertension/etiology
  4. Raffiz M, Abdullah JM
    Am J Emerg Med, 2017 Jan;35(1):150-153.
    PMID: 27852525 DOI: 10.1016/j.ajem.2016.09.044
    INTRODUCTION: Bedside ultrasound measurement of optic nerve sheath diameter (ONSD) is emerging as a non-invasive technique to evaluate and predict raised intracranial pressure (ICP). It has been shown in previous literature that ONSD measurement has good correlation with surrogate findings of raised ICP such as clinical and radiological findings suggestive of raised ICP.

    OBJECTIVES: The objective of the study is to find a correlation between sonographic measurements of ONSD value with ICP value measured via the gold standard invasive intracranial ICP catheter, and to find the cut-off value of ONSD measurement in predicting raised ICP, along with its sensitivity and specificity value.

    METHODS: A prospective observational study was performed using convenience sample of 41 adult neurosurgical patients treated in neurosurgical intensive care unit with invasive intracranial pressure monitoring placed in-situ as part of their clinical care. Portable SonoSite ultrasound machine with 7 MHz linear probe were used to measure optic nerve sheath diameter using the standard technique. Simultaneous ICP readings were obtained directly from the invasive monitoring.

    RESULTS: Seventy-five measurements were performed on 41 patients. The non-parametric Spearman correlation test revealed a significant correlation at the 0.01 level between the ICP and ONSD value, with correlation coefficient of 0.820. The receiver operating characteristic curve generated an area under the curve with the value of 0.964, and with standard error of 0.22. From the receiver operating characteristic curve, we found that the ONSD value of 5.205 mm is 95.8% sensitive and 80.4% specific in detecting raised ICP.

    CONCLUSIONS: ONSD value of 5.205 is sensitive and specific in detecting raised ICP. Bedside ultrasound measurement of ONSD is readily learned, and is reproducible and reliable in predicting raised ICP. This non-invasive technique can be a useful adjunct to the current invasive intracranial catheter monitoring, and has wide potential clinical applications in district hospitals, emergency departments and intensive care units.

    Matched MeSH terms: Intracranial Hypertension/etiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links