The Borrelia genus consists of spirochete bacteria known to cause Lyme disease (LD) and relapsing fever in humans. Borrelia pathogens are commonly transmitted via arthropod vectors such as ticks, mites, or lice. Here, we report the molecular screening of LD group Borrelia sp. from ticks (Acari: Ixodidae) collected from rodents trapped in recreational forests and a semiurban residential area in the Selangor state in Malaysia. Of 156 adult ticks surveyed, 72 ticks were determined as positive for Borrelia sp. by polymerase chain reaction (PCR). All Borrelia PCR-positive ticks belonged to the Ixodes granulatus Supino species. Borrelia sp. was not detected in other tick species examined, including Dermacentor sp. and Amblyomma sp. ticks. Thirteen Borrelia PCR-positive tick samples were selected for further sequence analyses. Phylogenetic analyses of partial flaB gene sequences revealed that the Borrelia sp. were closely related to the LD group borreliae, Borrelia yangtzensis; a novel Borrelia genospecies reported in East Asian countries including Japan, Taiwan, and China. To our knowledge, this is the first report of Borrelia sp. related to Borrelia yangtzensis detected in Malaysia and Southeast Asia. The zoonotic potential of the Borrelia sp. reported here merits further investigation, as it may explain the previously reported serological evidence for borrelial infections in Malaysia.
The genetic identity of Ixodes granulatus ticks was determined for the first time in Taiwan. The phylogenetic relationships were analyzed by comparing the sequences of mitochondrial 16S ribosomal DNA gene obtained from 19 strains of ticks representing seven species of Ixodes and two outgroup species (Rhipicephalus sanguineus and Haemaphysalis inermis). Four major clades could be easily distinguished by neighbour-joining analysis and were congruent by maximum-parsimony method. All these I. granulatus ticks of Taiwan were genetically affiliated to a monophyletic group with highly homogeneous sequences (92.2-99.3% similarity), and can be discriminated from other Ixodes species and other genera of ticks with a sequence divergence ranging from 11.7 to 30.8%. Moreover, intraspecific analysis revealed that two distinct lineages are evident between the same species of I. granulatus ticks collected from Taiwan and Malaysia. Our results demonstrate that all these I. granulatus ticks of Taiwan represent a unique lineage distinct from the common vector ticks (I. ricinus complex) for Borrelia burgdorferi spirochetes.