Displaying all 7 publications

Abstract:
Sort:
  1. Velayutham M, Guru A, Arasu MV, Al-Dhabi NA, Choi KC, Elumalai P, et al.
    J Biotechnol, 2021 Dec 10;342:79-91.
    PMID: 34751134 DOI: 10.1016/j.jbiotec.2021.10.010
    GR15 is a short molecule or peptide composed of aliphatic amino acids and possesses to have antioxidant properties. The GR15, 1GGGAFSGKDPTKVDR15 was identified from the protein S-adenosylmethionine synthase (SAMe) expressed during the sulfur departed state of Arthrospira platensis (spirulina or cyanobacteria). The in-silico assessment and the structural features of GR15 showed its antioxidant potency. Real-time PCR analysis found the up-regulation of ApSAMe expression on day 15 against oxidative stress due to 10 mM H2O2 treatment in A. platensis (Ap). The antioxidant activity of GR15 was accessed by the cell-free antioxidant assays such as ABTS, SARS, HRAS and NO; the results showed dose-dependent antioxidant activity. The toxicity assay was performed in both in vitro and in vivo models, in which peptide does not exhibit any toxicity in MDCK cell and zebrafish embryos. The intercellular ROS reduction potential of GR15 peptide was also investigated in both in vitro and in vivo models including LDH assay, antioxidant enzymes (SOD and CAT), and fluorescent staining assay (DCFDA, Hochest and Acridine orange sting) was performed; the results showed that the GR15 peptide was effectively reduced the ROS level. Further, RT-PCR demonstrated that GR15 enhanced the antioxidant property and also up-regulated the antioxidant gene, thus reduced the ROS level in both in vitro and in vivo models. Based on the results obtained from this study, we propose that GR15 has the potential antioxidant ability; hence further research can be directed towards the therapeutic product or drug development against disease caused by oxidative stress.
    Matched MeSH terms: Larva/metabolism
  2. Zulkifli AN, Zakeri HA, Azmi WA
    J Insect Sci, 2018 Sep 01;18(5).
    PMID: 30285257 DOI: 10.1093/jisesa/iey093
    The red palm weevil (RPW), Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae) is one of the most dangerous pests of major cultivated palms including coconut, oil palm, and sago. The larval stage of the weevil causes the most destruction of the palms as it completely destroys the palm cabbage. In this study, the larvae were given three different diets-coconut cabbage, oil palm cabbage, and sago stem, under laboratory conditions for food consumption and developmental time experiment. The protein profiles of the digestive systems of the larvae fed on these three diets were also determined. Although the coconut diet was the most consumed by RPW larvae compared to oil palm and sago diets, the growth rate of RPW larvae on oil palm diet was however significantly shorter than those on the coconut and sago diets: the RPW only need 1 mo and 9 d to complete the larval duration. Proteins profiling of eight 2-DE gel protein spots that range 50-20 kDa were identified by mass spectrometry sequence analysis. Based on the Matrix Science Software, the most dominant protein was cationic trypsin. However, based on the NCBI BLAST tool, aminopeptidase N was the most dominant enzyme. This finding can lead to the development of pest control strategies based on the antinutritional protease inhibitors as potential biocontrol agents. Urgent action to find effective control methods should be taken seriously as this weevil is presumed to be one of the serious pests of oil palm industry in Malaysia.
    Matched MeSH terms: Larva/metabolism
  3. Sayyed AH, Wright DJ
    Pest Manag Sci, 2001 May;57(5):413-21.
    PMID: 11374157
    A field population of Plutella xylostella from Malaysia (SERD4) was divided into five sub-populations and four were selected (G2-G5) with the Bacillus thuringiensis insecticidal crystal (Cry) toxins Cry1Ac, Cry1Ab, Cry1Ca and Cry1Da. Bioassay at G6 gave resistance ratios of 88, 5, 2 and 3 for Cry1Ac, Cry1Ab, Cry1Ca and Cry1Da respectively compared with the unselected sub-population (UNSEL-SERD4). The Cry1Ac-selected population showed little cross-resistance to Cry1Ab, Cry1Ca and Cry1Da, (3-, 2- and 3-fold compared with UNSEL-SERD4), whereas the Cry1Ab-SEL sub-population showed marked cross-resistance to Cry1Ac (40-fold), much greater than Cry1Ab itself. In contrast, the Cry1Ca- and Cry1Da-SEL sub-population showed little if any cross-resistance to Cry1Ac and Cry1Ab. The mode of inheritance of resistance to Cry1Ac was examined in Cry1Ac-selected SERD4 by standard reciprocal crosses and back-crosses using a laboratory insecticide-susceptible population (ROTH). Logit regression analysis of F1 reciprocal crosses indicated that resistance to Cry1Ac was inherited as an incompletely dominant trait. At the highest dose of Cry1Ac tested, resistance was recessive, while at the lowest dose it was almost completely dominant. The F2 progeny from a back-cross of F1 progeny with ROTH were tested with a concentration of Cry1Ac that would kill 100% of ROTH. The mortality ranged between 50 and 95% in seven families of back-cross progeny, which indicated that more than one allele on separate loci were responsible for resistance to Cry1Ac.
    Matched MeSH terms: Larva/metabolism
  4. Jaya-Ram A, Ishak SD, Enyu YL, Kuah MK, Wong KL, Shu-Chien AC
    PMID: 21130179 DOI: 10.1016/j.cbpa.2010.11.018
    There is very little information on the capacity of freshwater carnivorous fish to biosynthesize highly unsaturated fatty acids (HUFA). The striped snakehead fish (Channa striata) is a carnivorous species cultured inland of several Southeast Asian countries due to its pharmaceutical properties in wound healing enhancement. We described here the full-length cDNA cloning of a striped snakehead fatty acid desaturase (fads), which is responsible for desaturation of unsaturated fatty acids in the HUFA biosynthesis. Bioinformatics analysis reveals a protein coding region with length of 445 amino acids containing all characteristic features of desaturase enzyme, including a cytochrome b5-domain with the heme-binding motif, two transmembrane domains and three histidine-rich regions. The striped snakehead fads amino acid sequence shares high similarity with known fads of other teleosts. The mRNA expression of striped snakehead fads also showed an ontogenic-related increase in expression in 0-20 days after hatch larva. Using ISH, we localized the presence of fads in larva brain, liver and intestinal tissues.
    Matched MeSH terms: Larva/metabolism
  5. Fong MY, Lau YL
    Parasitol Res, 2004 Jan;92(2):173-6.
    PMID: 14655048
    A gene encoding the larval excretory-secretory antigen TES-120 of the dog ascarid worm Toxocara canis was cloned into the methylotrophic yeast Pichia pastoris. Specificity of the recombinant TES-120 antigen produced by the yeast was investigated. Forty-five human serum samples from patients infected with different()parasitic organisms, including 8 cases of toxocariasis, were tested against the recombinant antigen in immunoblot assays. Results from the assays showed that the recombinant TES-120 antigen reacted with sera from toxocariasis patients only. This highly specific recombinant TES-120 antigen can potentially be used for the development of an inexpensive serodiagnostic assay for human toxocariasis.
    Matched MeSH terms: Larva/metabolism
  6. Wong KC, Sankaran S, Jayapalan JJ, Subramanian P, Abdul-Rahman PS
    Arch Insect Biochem Physiol, 2021 May;107(1):e21785.
    PMID: 33818826 DOI: 10.1002/arch.21785
    Mutant lethal giant larvae (lgl) flies (Drosophila melanogaster) are known to develop epithelial tumors with invasive characteristics. The present study has been conducted to investigate the influence of melatonin (0.025 mM) on behavioral responses of lgl mutant flies as well as on biochemical indices (redox homeostasis, carbohydrate and lipid metabolism, transaminases, and minerals) in hemolymph, and head and intestinal tissues. Behavioral abnormalities were quantitatively observed in lgl flies but were found normalized among melatonin-treated lgl flies. Significantly decreased levels of lipid peroxidation products and antioxidants involved in redox homeostasis were observed in hemolymph and tissues of lgl flies, but had restored close to normalcy in melatonin-treated flies. Carbohydrates including glucose, trehalose, and glycogen were decreased and increased in the hemolymph and tissues of lgl and melatonin-treated lgl flies, respectively. Key enzymes of carbohydrate metabolism showed a significant increment in their levels in lgl mutants but had restored close to wild-type baseline levels in melatonin-treated flies. Variables of lipid metabolism showed significantly inverse levels in hemolymph and tissues of lgl flies, while normalization of most of these variables was observed in melatonin-treated mutants. Lipase, chitinase, transaminases, and alkaline phosphatase showed an increment in their activities and minerals exhibited decrement in lgl flies; reversal of changes was observed under melatonin treatment. The impairment of cognition, disturbance of redox homeostasis and metabolic reprogramming in lgl flies, and restoration of normalcy in all these cellular and behavioral processes indicate that melatonin could act as oncostatic and cytoprotective agents in Drosophila.
    Matched MeSH terms: Larva/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links