Displaying all 3 publications

Abstract:
Sort:
  1. Mokhtar NM, Ramzi NH, Yin-Ling W, Rose IM, Hatta Mohd Dali AZ, Jamal R
    Cancer Invest, 2012 Feb;30(2):156-64.
    PMID: 22122087 DOI: 10.3109/07357907.2011.633290
    This research determined genes contributing to the pathogenesis of endometrioid endometrial cancer (EEC). Eight pairs of microdissected EEC samples matched with normal glandular epithelium were analyzed using microarray. Unsupervised analysis identified 162 transcripts (58 up- and 104 down-regulated) that were differentially expressed (p < .01, fold change ≥ 1.5) between both groups. Quantitative real-time polymerase chain reaction (qPCR) validated the genes of interest: SLC7A5, SATB1, H19, and ZAK (p < .05). Pathway analysis revealed genes involved in acid amino transport, translation, and chromatin remodeling (p < .05). Laser capture microdissection (LCM) followed by microarray enabled precise assessment of homogeneous cell population and identified putative genes for endometrial carcinogenesis.
    Matched MeSH terms: Laser Capture Microdissection/methods*
  2. Sethi S, Chourasia D, Parhar IS
    J Biosci, 2015 Sep;40(3):607-27.
    PMID: 26333406
    An extensive guide on practicable and significant quantitative proteomic approaches in neuroscience research is important not only because of the existing overwhelming limitations but also for gaining valuable understanding into brain function and deciphering proteomics from the workbench to the bedside. Early methodologies to understand the functioning of biological systems are now improving with high-throughput technologies, which allow analysis of various samples concurrently, or of thousand of analytes in a particular sample. Quantitative proteomic approaches include both gel-based and non-gel-based methods that can be further divided into different labelling approaches. This review will emphasize the role of existing technologies, their advantages and disadvantages, as well as their applications in neuroscience. This review will also discuss advanced approaches for targeted proteomics using isotope-coded affinity tag (ICAT) coupled with laser capture microdissection (LCM) followed by liquid chromatography tandem mass spectrometric (LC-MS/MS) analysis. This technology can further be extended to single cell proteomics in other areas of biological sciences and can be combined with other 'omics' approaches to reveal the mechanism of a cellular alterations. This approach may lead to further investigation in basic biology, disease analysis and surveillance, as well as drug discovery. Although numerous challenges still exist, we are confident that this approach will increase the understanding of pathological mechanisms involved in neuroendocrinology, neuropsychiatric and neurodegenerative disorders by delivering protein biomarker signatures for brain dysfunction.
    Matched MeSH terms: Laser Capture Microdissection/methods
  3. Soga T, Dalpatadu SL, Wong DW, Parhar IS
    Neuroscience, 2012 Aug 30;218:56-64.
    PMID: 22626647 DOI: 10.1016/j.neuroscience.2012.05.023
    Synthetic glucocorticoid (dexamethasone; DEX) treatment during the neonatal stage is known to affect reproductive activity. However, it is still unknown whether neonatal stress activates gonadotropin-inhibitory hormone (GnIH) synthesizing cells in the dorsomedial hypothalamus (DMH), which could have pronounced suppressive action on gonadotropin-releasing hormone (GnRH) neurons, leading to delayed pubertal onset. This study was designed to determine the effect of neonatal DEX (1.0mg/kg) exposure on reproductive maturation. Therefore, GnRH, GnIH and GnIH receptors, G-protein coupled receptors (GPR) 147 and GPR74 mRNA levels were measured using quantitative real-time PCR in female mice at postnatal (P) days 21, 30 and in estrus stage mice, aged between P45-50. DEX-treated females of P45-50 had delayed vaginal opening, and irregular estrus cycles and lower GnRH expression in the preoptic area (POA) when compared with age-matched controls. The expression levels of GPR147 and GPR74 mRNA in the POA increased significantly in DEX-treated female mice of P21 and P45-50 compared to controls. In addition, GPR147 and GPR74 mRNA expression was observed in laser captured single GnRH neurons in the POA. Although there was no difference in GnIH mRNA expression in the DMH, immunostained GnIH cell numbers in the DMH increased in DEX-treated females of P45-50 compared to controls. Taken together, the results show that the delayed pubertal onset could be due to the inhibition of GnRH gene expression after neonatal DEX treatment, which may be accounted for in part by the inhibitory signals from the up-regulated GnIH-GnIH receptor pathway to the POA.
    Matched MeSH terms: Laser Capture Microdissection
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links