Displaying all 4 publications

Abstract:
Sort:
  1. Farhana K, Effendi I, Caszo B, Satar NA, Singh HJ
    J Physiol Biochem, 2014 Jun;70(2):417-23.
    PMID: 24711061 DOI: 10.1007/s13105-014-0319-2
    Although leptin has been shown to increase blood pressure (BP), it is however unclear if this increase can be prevented by exercise. This study therefore investigated the effect of leptin treatment with concurrent exercise on blood pressure (BP), sodium output, and endothelin-1 (ET-1) levels in normotensive rats. Male Sprague-Dawley rats weighing 250-270 g were divided into four groups consisting of a control group (n = 6), leptin-treated (n = 8), non-leptin-treated exercise group (n = 8), and a leptin-treated exercise group (n = 8). Leptin was given subcutaneously daily for 14 days (60 μg/kg/day). Animals were exercised on a treadmill for 30 min at a speed of 0.5 m/s and at 5° incline four times per week. Measurement of systolic blood pressure (SBP) and collection of urine samples for estimation of sodium and creatinine was done once a week. Serum samples were collected at the end of the experiment for determination of sodium, creatinine and ET-1. At day 14, mean SBP and serum ET-1 level in the leptin-treated group was significantly higher than that in the control group whereas mean SBP and serum ET-1 level was significantly lower in the leptin-treated exercise group than those in leptin-treated and control groups. Creatinine clearance, urinary sodium excretion, and urine output were not different between the four groups. Regular treadmill exercise prevents leptin-induced increases in SBP in rats, which might in part result from increased urinary sodium excretion and preventing the leptin-induced increases in serum ET-1 concentration.
    Matched MeSH terms: Leptin/physiology*
  2. Malik IA, Durairajanayagam D, Singh HJ
    Asian J Androl, 2018 12 13;21(3):296-299.
    PMID: 30539926 DOI: 10.4103/aja.aja_98_18
    Leptin, an adipocyte-derived hormone, serves numerous physiological functions in the body, particularly during puberty and reproduction. The exact mechanism by which leptin activates the gonadotropin-releasing hormone (GnRH) neurons to trigger puberty and reproduction remains unclear. Given the widespread distribution of leptin receptors in the body, both central and peripheral mechanisms involving the hypothalamic-pituitary-gonadal axis have been hypothesized. Leptin is necessary for normal reproductive function, but when present in excess, it can have detrimental effects on the male reproductive system. Human and animal studies point to leptin as a link between infertility and obesity, a suggestion that is corroborated by findings of low sperm count, increased sperm abnormalities, oxidative stress, and increased leptin levels in obese men. In addition, daily leptin administration to normal-weight rats has been shown to result in similar abnormalities in sperm parameters. The major pathways causing these abnormalities remain unidentified; however, these adverse effects have been attributed to leptin-induced increased oxidative stress because they are prevented by concurrently administering melatonin. Studies on leptin and its impact on sperm function are highly relevant in understanding and managing male infertility, particularly in overweight and obese men.
    Matched MeSH terms: Leptin/physiology*
  3. Isyraqiah F, Kutty MK, Durairajanayagam D, Singh HJ
    Mol Biol Rep, 2019 Dec;46(6):5967-5975.
    PMID: 31444698 DOI: 10.1007/s11033-019-05030-z
    Individuals who are obese are at a greater risk of developing gastric cancer. They are however also hyperleptinaemic. Chronic leptin treatment has been shown to upregulate numerous cancer-causing genes in the stomach of male Sprague-Dawley rats. It is however unclear if leptin enhances the effect of gastric carcinogens in vivo. This study was therefore done to investigate the effect of leptin on gastric carcinogenesis in rats treated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Twenty-four, 6-week old male Sprague-Dawley rats were divided equally into three groups: G1 served as age-matched controls; G2 was treated with MNNG in drinking water ad libitum (200 mg L-1); G3 was given leptin and MNNG. Rats were euthanized after 40 weeks of treatment and their stomachs were removed for histopathology, microarray, and RT-qPCR analysis. Fisher's exact test and one-way ANOVA were used to analyse the data. Fifty percent of the MNNG-treated rats developed gastric hyperplasia (p leptin treatment however induced hyperplasia, dysplasia, hypertrophy, and adenocarcinoma in 75% (6/8) of the rats; with upregulation of microRNAs, olfactory receptors, Hey2 (transcription factor), Tmed2 (vesicular trafficking), and Lcn11 (cell proliferation) genes. It appears that leptin enhances MNNG- induced tumour growth in stomachs of Sprague-Dawley rats and its role in gastric cancer requires further scrutiny.
    Matched MeSH terms: Leptin/physiology
  4. Luglio HF, Sulistyoningrum DC, Huriyati E, Lee YY, Wan Muda WAM
    Nutrients, 2017 Jul 07;9(7).
    PMID: 28686191 DOI: 10.3390/nu9070716
    BACKGROUND: Obesity has been associated with leptin resistance and this might be caused by genetic factors. The aim of this study was to investigate the gene-lifestyle interaction between -866G/A UCP2 (uncoupling protein 2) gene polymorphism, dietary intake and leptin in a population based study.

    METHODS: This is a cross sectional study conducted in adults living at urban area of Yogyakarta, Indonesia. Data of adiposity, lifestyle, triglyceride, high density lipoprotein (HDL) cholesterol, leptin and UCP2 gene polymorphism were obtained in 380 men and female adults.

    RESULTS: UCP2 gene polymorphism was not significantly associated with adiposity, leptin, triglyceride, HDL cholesterol, dietary intake and physical activity (allp> 0.05). Leptin was lower in overweight subjects with AA + GA genotypes than those with GG genotype counterparts (p= 0.029). In subjects with AA + GA genotypes there was a negative correlation between leptin concentration (r= -0.324;p< 0.0001) and total energy intake and this correlation was not seen in GG genotype (r= -0.111;p= 0.188).

    CONCLUSIONS: In summary, we showed how genetic variation in -866G/A UCP2 affected individual response to leptin production. AA + GA genotype had a better leptin sensitivity shown by its response in dietary intake and body mass index (BMI) and this explained the protective effect of A allele to obesity.

    Matched MeSH terms: Leptin/physiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links