METHODS: This is a retrospective analysis of the United Network for Organ Sharing registry data of LT recipients from January 1, 2000, to December 31, 2021. Outcomes analysis was performed using Cox proportional model for all-cause mortality and graft failure. Confounding was reduced by coarsened exact matching causal inference analysis.
RESULTS: Of 66 960 donors identified, 7178 (10.7%) had diabetes. Trend analysis revealed a longitudinal increase in the prevalence of donor diabetes ( P
OBJECTIVES: To determine the prevalence and characteristics of NAFLD in individuals with metabolically healthy obesity.
SETTING: A tertiary, academic, referral hospital.
METHODS: All patients who underwent bariatric surgery with intraoperative liver biopsy from 2008 to 2015 were identified. Patients with preoperative hypertension, dyslipidemia, or prediabetes/diabetes were excluded to identify a cohort of metabolically healthy obesity patients. Liver biopsy reports were reviewed to determine the prevalence of NAFLD.
RESULTS: A total of 270 patients (7.0% of the total bariatric surgery patients) met the strict inclusion criteria for metabolically healthy obesity. The average age was 38 ± 10 years and the average body mass index was 47 ± 7 kg/m2. Abnormal alanine aminotransferase (>45 U/L) and asparate aminotransferase levels (>40 U/L) were observed in 28 (10.4%) and 18 (6.7%) patients, respectively. A total of 96 (35.5%) patients had NAFLD with NALFD Activity Scores 0 to 2 (n = 61), 3 to 4 (n = 25), and 5 to 8 (n = 10). A total of 62 (23%) patients had lobular inflammation, 23 (8.5%) had hepatocyte ballooning, 22 (8.2%) had steatohepatitis, and 12 (4.4%) had liver fibrosis.
CONCLUSION: Even with the use of strict criteria to eliminate all patients with any metabolic problems, a significant proportion of metabolically healthy patients had unsuspected NAFLD. The need and clinical utility of routine screening of obese patients for fatty liver disease and the role of bariatric surgery in the management of NAFLD warrants further investigation.
MATERIALS AND METHODS: Adipose-derived mesenchymal stem cells were injected intravenously into the tails of mice of the Institute of Cancer Research strain that had been treated with carbon tetrachloride for 4 weeks. Survival rate, migration, and proliferation of adipose-derived mesenchymal stem cells in the liver were observed by histochemistry, fluorescent labeling, and serological detection.
RESULTS: At 1, 2, and 3 weeks after adipose-derived mesenchymal stem cell injection, liver fibrosis was significantly ameliorated. The injected adipose-derived mesenchymal stem cells had hepatic differentiation potential in vivo, and the survival rate of adipose-derived mesenchymal stem cells declined over time.
CONCLUSIONS: The findings in this study confirmed that adipose-derived mesenchymal stem cells derived from the Bama pig can be used in the treatment of liver fibrosis, and the grafted adipose-derived mesenchy-mal stem cells can migrate, survive, and differentiate into hepatic cells in vivo.