Displaying all 2 publications

Abstract:
Sort:
  1. Bunlungsup S, Kanthaswamy S, Oldt RF, Smith DG, Houghton P, Hamada Y, et al.
    Am J Primatol, 2017 12;79(12).
    PMID: 29095514 DOI: 10.1002/ajp.22726
    In the past decade, many researchers have published papers about hybridization between long-tailed and rhesus macaques. These previous works have proposed unidirectional gene flow with the Isthmus of Kra as the zoogeographical barrier of hybridization. However, these reports analyzed specimens of unknown origin and/or did not include specimens from Thailand, the center of the proposed area of hybridization. Collected specimens of long-tailed and rhesus macaques representing all suspected hybridization areas were examined. Blood samples from four populations each of long-tailed and rhesus macaques inhabiting Thailand, Myanmar, and Laos were collected and analyzed with conspecific references from China (for rhesus macaques) and multiple countries from Sundaic regions (for long-tailed macaques). Ninety-six single nucleotide polymorphism (SNP) markers specifically designed to interrogate admixture and ancestry were used in genotyping. We found genetic admixture maximized at the hybrid zone (15-20°N), as well as admixture signals of varying strength in both directions outside of the hybrid zone. These findings show that the Isthmus of Kra is not a barrier to gene flow from rhesus to long-tailed populations. However, to precisely identify a southernmost barrier, if in fact a boundary rather than simple isolation by distance exists, the samples from peninsular Malaysia must be included in the analysis. Additionally, a long-tailed to rhesus gene flow boundary was found between northern Thailand and Myanmar. Our results suggest that selection of long-tailed and rhesus macaques, the two most commonly used non-human primates for biomedical research, should take into account not only the species identification but also the origin of and genetic admixture within and between the species.
    Matched MeSH terms: Macaca mulatta/genetics*
  2. Zhang X, Meng Y, Houghton P, Liu M, Kanthaswamy S, Oldt R, et al.
    J Med Primatol, 2017 04;46(2):31-41.
    PMID: 28266719 DOI: 10.1111/jmp.12256
    BACKGROUND: Most cynomolgus macaques (Macaca fascicularis) used in the United States as animal models are imported from Chinese breeding farms without documented ancestry. Cynomolgus macaques with varying rhesus macaque ancestry proportions may exhibit differences, such as susceptibility to malaria, that affect their suitability as a research model.

    METHODS: DNA of 400 cynomolgus macaques from 10 Chinese breeding farms was genotyped to characterize their regional origin and rhesus ancestry proportion. A nested PCR assay was used to detect Plasmodium cynomolgi infection in sampled individuals.

    RESULTS: All populations exhibited high levels of genetic heterogeneity and low levels of inbreeding and genetic subdivision. Almost all individuals exhibited an Indochinese origin and a rhesus ancestry proportion of 5%-48%. The incidence of P. cynomolgi infection in cynomolgus macaques is strongly associated with proportion of rhesus ancestry.

    CONCLUSIONS: The varying amount of rhesus ancestry in cynomolgus macaques underscores the importance of monitoring their genetic similarity in malaria research.

    Matched MeSH terms: Macaca mulatta/genetics
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links