Displaying all 3 publications

Abstract:
Sort:
  1. Chandrawathani P, Jamnah O, Waller PJ, Höglund J, Larsen M, Zahari WM
    Vet Res, 2002 Nov-Dec;33(6):685-96.
    PMID: 12498569
    Approximately 2,800 fresh dung samples from animals, mainly ruminant livestock, were screened for the presence of nematophagous fungi in Malaysia. Arthrobotrys spp. was noted on numerous occasions, but only one isolate of Duddingtonia flagrans was made. For the purposes of producing sufficient quantities of this fungus for feeding trials in sheep, various, commonly available, cheap plant materials were tested as possible growth substrates. This showed that cereal grains (wheat, millet and rice) were the best media for fungal growth. Pen feeding trials were carried out using sheep, both naturally and experimentally infected with nematode parasites (predominantely Haemonchus contortus), to test the efficiency of D. flagrans when administered either in a grain supplement, or incorporated into a feed block. These showed that the fungus survived gut passage in sheep and that dose rates of approximately 1 x 10(6) D. flagrans spores / animal / day, reduced the percentage of infective larvae developing in faecal cultures by more than 90%. These results indicate that using D. flagrans as a biological control agent of nematode parasites, is a promising alternative to nematode parasite control of small ruminants in Malaysia, where anthelmintic resistance is now a major problem.
    Matched MeSH terms: Mitosporic Fungi/growth & development
  2. Chandrawathani P, Jamnah O, Adnan M, Waller PJ, Larsen M, Gillespie AT
    Vet Parasitol, 2004 Mar 25;120(3):177-87.
    PMID: 15041093
    Long-term field studies were conducted on two government managed small ruminant research farms, located in different geo-climatic regions and approximately 300 km separate from each other, on Peninsula Malaysia. The Infoternak trial (48 weeks) and the Chalok trial (43 weeks) each compared nematode parasite control in separately managed groups of young sheep, either short-term rotationally grazed around a suite of 10 paddocks in addition to receiving a daily supplement of Duddingtonia flagrans spores (Fungus Group); or similar groups of sheep being rotationally grazed alone (Control Group). The prevailing weather conditions at Infoternak farm were of below average rainfall conditions for the most of the trial. As a consequence, only very low worm infections (almost exclusively Haemonchus contortus) were acquired by the 17 sets of tracer lambs that grazed sequentially with the experimental lambs. However on all except 2 occasions in the early part of the trial, the mean tracer worm burdens were significantly lower (P < 0.05) and the experimental lambs grew significantly better (P = 0.054) in the Fungus Group. Rainfall at Chalok farm during the course of the trial was also below average. As a consequence infectivity of pastures was assumed to be relatively low based on faecal egg counts (epg) of the experimental sheep, which following an anthelmintic treatment prior to allocation, remained very low in both treatment groups. Faecal egg counts of undosed replacement lambs in the latter half of the Chalok study, showed a progressive increase in the Control Group to levels exceeding 3000 epg, whereas the Fungus Group remained static at approximately 500 epg. These results show that the deployment of the nematophagous fungus, D. flagrans, can improve the level of parasite control of sheep in the tropics above that which can be achieved by the short-term rotational grazing strategy alone.
    Matched MeSH terms: Mitosporic Fungi/growth & development*
  3. Chandrawathani P, Jamnah O, Waller PJ, Larsen M, Gillespie AT, Zahari WM
    Vet Parasitol, 2003 Nov 14;117(3):173-83.
    PMID: 14630426
    Control of nematode parasites of small ruminants in a wet, tropical environment using the nematophagous fungus, Duddingtonia flagrans, was assessed in this study. Two methods of fungal delivery were tested, namely as a daily feed supplement, or incorporated into feed blocks. Initially, pen trials were conducted with individually penned groups of sheep and goats at dose rates of 125,000 spores and 250,000 spores/kg live weight per day. At the lower dose rate this reduction was between 80 and 90% compared with the pre-treatment levels. At the higher dose rate, there was virtually complete suppression (>99% reduction) of larval recovery. Trials using the fungal feed blocks, showed that when animals were individually penned, they consumed only small amounts of the block (particularly goats), hence little effect on larval recovery in faecal cultures was observed. Grouping animals according to species and dose rate induced satisfactory block consumption and subsequent high levels of larval reduction in faecal cultures. These larval reductions were mirrored by the presence of fungus in faecal cultures. This work was followed by a small paddock trial, whereby three groups of sheep were fed either a feed supplement without fungal spores, supplement with spores, or offered fungal blocks. The dose rate of spores in the latter two groups was 500,000 spores/kg live weight per day. Egg counts were significantly reduced in the two fungal groups, compared with the control group and the latter required two salvage anthelmintic treatments to prevent mortality due to haemonchosis. Pasture larval numbers on the two fungal group plots were also much lower than on the control plot.
    Matched MeSH terms: Mitosporic Fungi/growth & development
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links