Displaying all 2 publications

Abstract:
Sort:
  1. Shukor MY, Habib SH, Rahman MF, Jirangon H, Abdullah MP, Shamaan NA, et al.
    Appl Biochem Biotechnol, 2008 Apr;149(1):33-43.
    PMID: 18350385 DOI: 10.1007/s12010-008-8137-z
    A molybdate-reducing bacterium has been locally isolated. The bacterium reduces molybdate or Mo(6+) to molybdenum blue (molybdate oxidation states of between 5+ and 6+). Different carbon sources such as acetate, formate, glycerol, citric acid, lactose, fructose, glucose, mannitol, tartarate, maltose, sucrose, and starch were used at an initial concentration of 0.2% (w/v) in low phosphate media to study their effect on the molybdate reduction efficiency of bacterium. All of the carbon sources supported cellular growth, but only sucrose, maltose, glucose, and glycerol (in decreasing order) supported molybdate reduction after 24 h of incubation. Optimum concentration of sucrose for molybdate reduction is 1.0% (w/v) after 24 h of static incubation. Ammonium sulfate, ammonium chloride, valine, OH-proline, glutamic acid, and alanine (in the order of decreasing efficiency) supported molybdate reduction with ammonium sulfate giving the highest amount of molybdenum blue after 24 h of incubation at 0.3% (w/v). The optimum molybdate concentration that supports molybdate reduction is between 15 and 25 mM. Molybdate reduction is optimum at 35 degrees C. Phosphate at concentrations higher than 5 mM strongly inhibits molybdate reduction. The molybdenum blue produced from cellular reduction exhibits a unique absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. The isolate was tentatively identified as Serratia marcescens Strain Dr.Y6 based on carbon utilization profiles using Biolog GN plates and partial 16s rDNA molecular phylogeny.
    Matched MeSH terms: Molybdenum/pharmacology
  2. Yaakub H, Masnindah M, Shanthi G, Sukardi S, Alimon AR
    Anim. Reprod. Sci., 2009 Oct;115(1-4):182-8.
    PMID: 19167847 DOI: 10.1016/j.anireprosci.2008.12.006
    Testes from nine male Malin x Santa-Ines rams with an average body weight of 43.1+/-3.53 kg, were used to study the effects of palm kernel cake (PKC) based diet on spermatogenic cells and to assess copper (Cu) levels in liver, testis and plasma in sheep. Animals were divided into three groups and randomly assigned three dietary treatments using restricted randomization of body weight in completely randomized design. The dietary treatments were 60% palm kernel cake plus 40% oil palm frond (PKC), 60% palm kernel cake plus 40% oil palm frond supplemented with 23 mg/kg dry matter of molybdenum as ammonium molybdate [(NH(4))(6)Mo(7)O(24).4H(2)O] and 600 mg/kg dry matter of sulphate as sodium sulphate [Na(2)SO(4)] (PKC-MS) and 60% concentrate of corn-soybean mix+40% oil palm frond (Control), the concentrate was mixed in a ratio of 79% corn, 20% soybean meal and 1% standard mineral mix. The results obtained showed that the number of spermatogonia, spermatocytes, spermatids and Leydig cells were not significantly different among the three treatment groups. However, spermatozoa, Sertoli cells and degenerated cells showed significant changes, which, may be probably due to the Cu content in PKC. Liver and testis Cu levels in the rams under PKC diet was found to be significantly higher (P<0.05) than rams in Control and PKC-MS diets. Plasma Cu levels showed a significant increase (P<0.05) at the end of the experiment as compared to at the beginning of the experiment for PKC and Control. In conclusion, spermatogenesis is normal in rams fed the diet without PKC and PKC supplemented with Mo and S. However spermatogenesis was altered in the PKC based diet probably due to the toxic effects of Cu and the significant changes in organs and plasma. Thus, Mo and S play a major role in reducing the accumulation of Cu in organs.
    Matched MeSH terms: Molybdenum/pharmacology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links