Displaying all 2 publications

Abstract:
Sort:
  1. Chew ZX, Lim CL, Ng KY, Chye SM, Ling APK, Koh RY
    CNS Neurol Disord Drug Targets, 2023;22(3):329-352.
    PMID: 34970960 DOI: 10.2174/1871527321666211231100255
    Parkinson's disease (PD) is a progressive neurodegenerative disease characterised by reduced dopamine levels in the substantial nigra. This may lead to typical motor features such as bradykinesia, resting tremors and rigid muscles, as well as non-motor symptoms such as neuropsychiatric symptoms, sleep disorders, autonomic dysfunction, and sensory disturbances. Inhibitors of monoamine oxidase B (MAO-B) are used to alleviate symptoms by reducing monoamine oxidase-catalysed degradation of dopamine; hence, preserving functional levels of dopamine. The very first MAO-B inhibitor used therapeutically was selegiline, followed by rasagiline, its indane derivative which has superior efficacy and selectivity. Both inhibitors can be used as monotherapy or in combination with other anti- Parkinson drugs. Safinamide, a reversible MAO-B inhibitor that utilises both dopaminergic and non-dopaminergic mechanisms, was recently approved by the European Medicines Agency (EMA) (2015) and U.S. FDA (2017) as an add-on therapy for patients with mid- or late-stage Parkinson's disease. Furthermore, MAO-B inhibitors were found to be associated with potential neuroprotective and disease modifying effects. However, evidence of their efficacy and role in PD models is scarce and warrants further investigation.
    Matched MeSH terms: Monoamine Oxidase Inhibitors/therapeutic use
  2. Aftab MF, Afridi SK, Mughal UR, Karim A, Haleem DJ, Kabir N, et al.
    J. Chem. Neuroanat., 2017 04;81:1-9.
    PMID: 28093241 DOI: 10.1016/j.jchemneu.2017.01.001
    Diabetes is associated with neurodegeneration. Glycation ensues in diabetes and glycated proteins cause insulin resistance in brain resulting in amyloid plaques and NFTs. Also glycation enhances gliosis by promoting neuroinflammation. Currently there is no therapy available to target neurodegenration in brain therefore, development of new therapy that offers neuroprotection is critical. The objective of this study was to evaluate mechanistic effect of isatin derivative URM-II-81, an anti-glycation agent for improvement of insulin action in brain and inhibition of neurodegenration. Methylglyoxal induced stress was inhibited by treatment with URM-II-81. Also, Ser473 and Ser9 phosphorylation of Akt and GSK-3β respectively were restored by URM-II-81. Effect of URM-II-81 on axonal integrity was studied by differentiating Neuro2A using retinoic acid. URM-II-81 restored axonal length in MGO treated cells. Its effects were also studied in high fat and low dose streptozotocin induced diabetic mice where it reduced RBG levels and inhibited glycative stress by reducing HbA1c. URM-II-81 treatment also showed inhibition of gliosis in hippocampus. Histological analysis showed reduced NFTs in CA3 hippocampal region and restoration of insulin signaling in hippocampii of diabetic mice. Our findings suggest that URM-II-81 can be developed as a new therapeutic agent for treatment of neurodegenration.
    Matched MeSH terms: Monoamine Oxidase Inhibitors/therapeutic use
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links