The nucleotide sequences of the second internal transcribed spacer of rDNA were determined for adult worms of Necator americanus originating from Togo (Africa) and Sarawak (Malaysia). The length of the sequences of specimens from Togo (325 bp) were shorter than those from Sarawak (327 bp). There were six fixed genetic differences in the aligned sequences of N. americanus from Sarawak and Togo, excluding one or two polymorphic sites within the sequence of N. americanus from each geographical region. These findings suggest that there is either population variation in the sequence of N. americanus, or that N. americanus from the two countries may represent genetically distinct but morphologically similar (i.e. cryptic) species, however, comparison of the sequence differences among other hookworm species supports the latter conclusion.
Two female and one male adult hookworms were recovered from a female patient in Thailand. Based on gross and microscopic morphology, the three hookworms are members of Necator americanus. Phylogenetic reconstruction based on partial NADH dehydrogenase subunit 1 (nad1) mitochondrial gene sequences shows that these hookworms belong to the same genetic lineage as N. americanus adult worm from Zhejiang, China. The male and female hookworms were genetically distinct, belonging to two different nad1-haplotypes. This is the first report targeting the nad1 gene on the identification and genetic characterization of the human hookworms originated from infected patient. The nad1 gene marker is useful for species and higher taxa differentiation of hookworms.
It has been tested and proven that vaccination is still the best strategy to combat infectious diseases. However, to date, there are still no vaccines against human soil-transmitted helminthic diseases, despite their high prevalence globally, particularly in developing countries and rural areas with tropical climates and poor sanitation. The development of vaccines against helminths is riddled with obstacles. Helminths have a complex life cycle, multiple stages within the same host with stage-specific antigen expression, and the ability to regulate host immune reactions to evade the immune response. These elements contribute to the main challenge of helminthic vaccines: the identification of effective vaccine candidates. Therefore, this article reviews the current progress and potential future direction of soil-transmitted helminthic vaccines, particularly against Trichuris trichiura, Ascaris lumbricoides, Strongyloides stercoralis, Necator americanus and Ancylostoma duodenale. The study design employed was a systematic review, using qualitative meta-summary synthesis. Preclinical studies and clinical trials on the development of protein subunit vaccines against the five soil-transmitted helminths were searched on PubMed and Scopus. Effectiveness was indicated by a reduction in worm burden or larval output, an increase in specific IgG levels, or an increase in cytokine production. Our findings show that only the hookworm vaccine against N. americanus is in the clinical trial phase, while the rest is still in exploratory research and pre-clinical development phase.
Ongoing urbanisation of the working population as well as cross-border migration of workers particularly into large cities has contributed to the development and growth of urban slums. These deprived areas are conducive for the transmission of intestinal pathogens including hookworm. The aim of this study was to determine both the prevalence and species identity of hookworm infections among the migrant worker community in Malaysia. A total of 388 faecal samples were collected from migrant workers between September 2014 and August 2015, representing workers from five employment sectors: construction, manufacturing, agriculture and plantations, food services and domestic services. Faecal samples were examined by microscopy and positive samples were subjected to molecular analysis. A total of 51 samples (13.1%) were positive by microscopy for hookworm infections. A two-step PCR based method amplifying a fragment of the 28S rRNA-ITS2 region was used to identify infections by Necator americanus and Ancylostoma spp. PCR products positive for Ancylostoma spp. were sequenced bidirectionally, and sequences analysed through BLAST and phylogenetic analysis. Samples containing Ancylostoma duodenale were further characterized by amplification and sequencing a fragment of cytochrome c oxidase subunit 1 (cox1) gene. PCR amplicons were successfully obtained from 42 (82.4%) of 51 samples, with 81.0% (34 of 42) identified as Necator americanus, 16.7% (7 of 42) as Ancylostoma spp. and 2.4% (1 of 42) as mixed infections of both species. All eight Ancylostoma spp. were confirmed to be Ancylostoma duodenale and this is the first time A. duodenale was reported in Malaysia. Samples containing A. duodenale from Nepalese and Indonesian workers shared high-similarity and were distinct compared to sequences from other countries. This study highlights the prevalence of hookworm infections among migrant workers living in Malaysia. Our findings underscore the necessity of screening migrant workers for hookworm infections, particularly those working in food-related services and industries.
Species identification of human hookworm infections among eight communities in rural areas of Peninsular Malaysia was determined during 2009-2011. Fecal samples were examined by microscopy and subsequently, the internal transcribed spacer 2 and 28S ribosomal RNA region of Necator americanus and Ancylostoma spp. were sequenced. Overall, 9.1% (58 of 634) were identified positive by microscopy for hookworm infection, and 47 (81.0%) of 58 were successfully amplified and sequenced. Sequence comparison found that N. americanus (87.2%) was the most predominant hookworm identified, followed by Ancylostoma ceylanicum (23.4%). No A. duodenale infection was detected in this study. Detection of A. ceylanicum in humans highlighted the zoonotic transmission among humans living near dogs. Thus, implementation of effective control measures for hookworm infections in future should seriously consider this zoonotic implication.
The Orang Aslis are indigenous minority peoples of Peninsular Malaysia, numbering 147,412 in 2003.Currently, the Orang Asli are divided into four language groupings namely the Northern Aslian, the Central Aslian, and the Southern Aslian groups, all of whom speak Austroasiatic languages; a fourth group in the South of Peninsular Malaysia speak a Malay dialect belonging to the Austronesian group of languages.This research was carried out on only one of the Northern Aslian group, the Jehai, who are also named Negritos based on their physical features. The Jehai live in the Belum and the Temenggor Forest that straddles Upper Perak and West Kelantan and until recently, were nomadic and lived by hunting-gathering.The World Health Organization (WHO) estimates that approximately two billion people worldwide are infected with the soil-transmitted nematode helminths,Ascaris lumbricoides, Trichuris trichiura and the hookworms Necator americanus and Ancylostoma duodenale, with 400 million of these infected being children of school age.Global numbers of A. lumbricoides infection have been estimated at about 1.5 billion cases. (Crompton, 2001). T. trichiura infection affects approximately 1,049 million people worldwide and an estimated 1.2 billion people are infected by hookworms. In Malaysia, the most common soil-transmitted helminth infections are A. lumbricoides, T. trichiura and hookworms.
However, as there have been no extensive surveys on these infections, it is difficult to estimate with certainty the current overall incidence of infection with soil-transmitted helminths (STHs) among the Malaysian population.