Functional foods such as pomegranate, dates and honey were shown by various previous studies to individually have a neuroprotective effect, especially in neurodegenerative disease such as Alzheimer's disease (AD). In this novel and original study, an 1H NMR spectroscopy tool was used to identify the metabolic neuroprotective mechanism of commercially mixed functional foods (MFF) consisting of pomegranate, dates and honey, in rats injected with amyloid-beta 1-42 (Aβ-42). Forty-five male albino Wistar rats were randomly divided into five groups: NC (0.9% normal saline treatment + phosphate buffer solution (PBS) solution injection), Abeta (0.9% normal saline treatment + 0.2 µg/µL Aβ-42 injection), MFF (4 mL/kg MFF treatment + PBS solution injection), Abeta-MFF (4 mL/kg MFF treatment + 0.2 µg/µL Aβ-42 injection) and Abeta-NAC (150 mg/kg N-acetylcysteine + 0.2 µg/µL Aβ-42 injection). Based on the results, the MFF and NAC treatment improved the spatial memory and learning using Y-maze. In the metabolic analysis, a total of 12 metabolites were identified, for which levels changed significantly among the treatment groups. Systematic metabolic pathway analysis found that the MFF and NAC treatments provided a neuroprotective effect in Aβ-42 injected rats by improving the acid amino and energy metabolisms. Overall, this finding showed that MFF might serve as a potential neuroprotective functional food for the prevention of AD.
The aim of this research is to investigate whether edible bird's nest (EBN) attenuates cortical and hippocampal neurodegeneration in ovariectomized rats. Ovariectomized rats were randomly divided into seven experimental groups (n = 6): the ovariectomy (OVX) group had their ovaries surgically removed; the sham group underwent surgical procedure similar to OVX group, but ovaries were left intact; estrogen group had OVX and received estrogen therapy (0.2 mg kg(-1) per day); EBN treatment groups received 6%, 3%, and 1.5% EBN, respectively. Control group was not ovariectomized. After 12 weeks of intervention, biochemical assays were performed for markers of neurodegeneration, and messenger ribonucleic acid (mRNA) levels of oxidative stress-related genes in the hippocampus and frontal cortex of the brain were analysed. Caspase 3 (cysteine-aspartic proteases 3) protein levels in the hippocampus and frontal cortex were also determined using western blotting. The results show that EBNs significantly decreased estrogen deficiency-associated serum elevation of advanced glycation end-products (AGEs), and they changed redox status as evidenced by oxidative damage (malondialdehyde content) and enzymatic antioxidant defense (superoxide dismutase and catalase) markers. Furthermore, genes associated with neurodegeneration and apoptosis were downregulated in the hippocampus and frontal cortex by EBN supplementation. Taken together, the results suggest that EBN has potential for neuroprotection against estrogen deficiency-associated senescence, at least in part via modification of the redox system and attenuation of AGEs.