Displaying all 3 publications

Abstract:
Sort:
  1. Parhar I, Ogawa S, Kitahashi T
    Prog. Neurobiol., 2012 Aug;98(2):176-96.
    PMID: 22684005 DOI: 10.1016/j.pneurobio.2012.05.011
    Hypothalamic gonadotropin-releasing hormone (GnRH) is a key hormone for reproductive functions in vertebrates and non-vertebrates. Although GnRH neuronal system is regulated by several factors such as steroids, neurotransmitters and neuropeptides, it is not fully understood how environmental signals control the GnRH neuronal system. RFamide peptides, members of peptides possessing an Arg-Phe-NH(2) motif at their C-terminus, have recently been characterized as major regulators of GnRH neurons. In particular, two key RFamide peptides, kisspeptin and gonadotropin-inhibitory hormone (GnIH), are emerging as important regulators of the reproductive axis. Kisspeptin acts as the accelerator, directly driving GnRH neurons, whereas GnIH acts as the restraint. In addition, other RFamide peptides such as prolactin-releasing peptide (PrRP), PQRFa peptide, 26RFa/QRFP are also known to control reproduction. These RFamide peptides are regulated by environmental factors such as photoperiods, steroid hormones, metabolic signals, and stress. How environmental signals are integrated by RFamide peptides to regulate reproduction through the GnRH neurons?
    Matched MeSH terms: Neuropeptides/physiology*
  2. Biran J, Golan M, Mizrahi N, Ogawa S, Parhar IS, Levavi-Sivan B
    Endocrinology, 2014 Nov;155(11):4391-401.
    PMID: 25144920 DOI: 10.1210/en.2013-2047
    LPXRFamide (LPXRFa) peptides have been characterized for their ability to inhibit gonadotropin (GTH) release in birds and stimulate growth hormone (GH) release in frogs. However, their involvement in regulating the reproductive hypothalamo-pituitary-gonadal axis in mammals and fish is inconclusive. To study the role of LPXRFa peptides in the regulation of GTH secretion, we cloned tilapia LPXRFa and LPXRF receptor (LPXRF-R). Processing of the tilapia preproLPXRFa liberated three mature LPXRFa peptides that varied in size and post-translational modifications. Phylogenetic analysis of LPXRFa and the closely related RFamide peptide PQRFa showed clear clustering of each peptide sequence with its orthologs from various vertebrates. Signal-transduction analysis of the tilapia LPXRF-R in COS-7 cells showed clear stimulation of CRE-dependent luciferase activity, whereas the human NPFFR1 showed suppression of forskolin-induced CRE-dependent activity in this system. Administration of the tilapia pyroglutaminated LPXRFa-2 peptide to primary cell culture of tilapia pituitaries, or to reproductive female tilapia by ip injection, positively regulated both LH and FSH release in vivo and in vitro. Using double-labeled fluorescent in-situ hybridization and immunofluorescence, βLH cells were found to co-express both tilapia lpxrf and tilapia lpxrf-r mRNA, whereas some of the βFSH cells coexpressed only lpxrf-r mRNA. No coexpression of tilapia lpxrf-r was identified in GH-positive cells. These findings suggest that the LPXRFa system is a potent positive regulator of the reproductive neuroendocrine axis of tilapia.
    Matched MeSH terms: Neuropeptides/physiology*
  3. Inayat-Hussain SH, Wong LT, Chan KM, Rajab NF, Din LB, Harun R, et al.
    Toxicol Lett, 2009 Dec 15;191(2-3):118-22.
    PMID: 19698770 DOI: 10.1016/j.toxlet.2009.08.012
    Goniothalamin, a styryllactone, has been shown to induce cytotoxicity via apoptosis in several tumor cell lines. In this study, we have examined the potential role of several genes, which were stably transfected into T-cell lines and which regulate apoptosis in different ways, on goniothalamin-induced cell death. Overexpression of full-length receptor for activated protein C-kinase 1 (RACK-1) and pc3n3, which up-regulates endogenous RACK-1, in both Jurkat and W7.2 T cells resulted in inhibition of goniothalamin-induced cell death as assessed by MTT and clonogenic assays. However, overexpression of rFau (antisense sequence to Finkel-Biskis-Reilly murine sarcoma virus-associated ubiquitously expressed gene) in W7.2 cells did not confer resistance to goniothalamin-induced cell death. Etoposide, a clinically used cytotoxic agent, was equipotent in causing cytotoxicity in all the stable transfectants. Assessment of DNA damage by Comet assay revealed goniothalamin-induced DNA strand breaks as early as 1 h in vector control but this effect was inhibited in RACK-1 and pc3n3 stably transfected W7.2 cells. This data demonstrate that RACK-1 plays a crucial role in regulating cell death signalling pathways induced by goniothalamin.
    Matched MeSH terms: Neuropeptides/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links