The sebaceous gland is a major site of steroid synthesis in human skin, but details of the status of steroidogenic enzymes and their regulation in human sebaceous glands under normal and pathological conditions have rarely been reported. Therefore, in this study, we examined the status of steroidogenic enzymes, sex steroid receptors and transcription factors in human sebaceous glands under normal and pathological conditions to explore their possible roles in in situ steroid production in human skin. Immunohistochemical analysis was performed in a total of 59 human skin specimens, including 22 normal human sebaceous glands, 12 with sebaceous nevus, 12 with sebaceous gland hyperplasia, 3 with sebaceoma and 10 with sebaceous carcinoma. Immortalised human SZ95 sebocytes were treated with forskolin or vehicle for 3h, 6h, 12h or 24h, and the mRNA levels of steroidogenic enzymes were evaluated at each time point using quantitative RT-PCR (qPCR). The results of immunohistochemistry demonstrated the immunoreactivity of 3β-HSD1, CYP11A1, StAR, 17β-HSD5, CYP17A1, 5α-red1, PRB, AR and NGFI-B in normal human sebaceous gland, with lower levels of expression in pathological sebaceous glands. The results of the in vitro study also indicated that the expression levels of 3β-HSD1, CYP11A1, StAR, 5α-red1 and NGFI-B were elevated by forskolin. 3β-HSD1 and other steroidogenic enzymes were expressed in sebaceous glands resulting in in situ androgen and progesterone synthesis and their functions.
Matched MeSH terms: Nuclear Receptor Subfamily 4, Group A, Member 1/genetics; Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism*
Cyclic AMP (cAMP) inducible transcription factor cAMP responsive element binding protein 3 like 1 (Creb3l1) is strongly activated in the hypothalamus in response to hyperosmotic cues such as dehydration (DH). We have recently shown that Creb3l1 expression is upregulated by cAMP pathways in vitro, however the exact mechanisms are not known. Here we show that increasing Creb3l1 transcription by raising cAMP levels in mouse pituitary AtT20 cells automatically initiates cleavage of Creb3l1, leading to a greater abundance of the transcriptionally active N-terminal portion. Inhibiting protein synthesis indicated that de novo protein synthesis of an intermediary transcription factor was required for Creb3l1 induction. Strategic mining of our microarray data from dehydrated rodent hypothalamus revealed four candidates, reduced to two by analysis of acute hyperosmotic-induced transcriptional activation profiles in the hypothalamus, and one, orphan nuclear receptor Nr4a1, by direct shRNA mediated silencing in AtT20 cells. We show that activation of Creb3l1 transcription by Nr4a1 involves interaction with a single NBRE site in the promoter region. The ability to activate Creb3l1 transcription by this pathway in vitro is dictated by the level of methylation of a CpG island within the proximal promoter/5'UTR of this gene. We thus identify a novel cAMP-Nr4a1-Creb3l1 transcriptional pathway in AtT20 cells and also, our evidence would suggest, in the hypothalamus.
Matched MeSH terms: Nuclear Receptor Subfamily 4, Group A, Member 1