Insufficient experimental studies have reported the effect of ovalbumin (OVA) as an allergen towards embryonic growth in asthma mouse model. The impact of 10 μg/200 μL OVA on maternal inflammatory and oxidative stress (OS) responses, and preimplantation embryonic development was investigated in this study. We first established OVA-induced asthma mouse model, and following superovulation, mated the females and challenged them with Methacholine (Mch) test. Upon embryo retrieval, only those with the highest implantation potential were cultured in vitro. Significant reduction in the number of embryos at each preimplantation stage was noted in the treated group. Uneven sized blastomeres at 2-, 4- and 8-cell stages were also evident in this group. Embryo fragmentation was significant at only 2-, 4- and 8-cell stages. We also found that OVA tended to raise maternal inflammatory and OS biomarker levels as well as to cause inappropriate levels of pregnancy hormones progesterone (P4) and estrogen (E2) although insignificant. The combined results indicate that 10 μg/200 μL OVA had altered both quality and quantity of the embryos in asthma mouse model although its effect on pregnancy hormones, inflammatory and OS responses were non-pathological.
The caspase inhibitor benzyloxycarbony (Cbz)-l-Val-Ala-Asp (OMe)-fluoromethylketone (z-VAD-FMK) has recently been shown to inhibit T cell proliferation without blocking caspase-8 and caspase-3 activation in primary T cells. We showed in this study that z-VAD-FMK treatment leads to a decrease in intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) levels in activated T cells. The inhibition of anti-CD3-mediated T cell proliferation induced by z-VAD-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC) and l-cysteine, whereas d-cysteine which cannot be metabolised to GSH has no effect. These results suggest that the depletion of intracellular GSH is the underlying cause of z-VAD-FMK-mediated inhibition of T cell activation and proliferation. The presence of exogenous GSH also attenuated the inhibition of anti-CD3-induced CD25 and CD69 expression mediated by z-VAD-FMK. However, none of the low molecular weight thiols were able to restore the caspase-inhibitory properties of z-VAD-FMK in activated T cells where caspase-8 and caspase-3 remain activated and processed into their respective subunits in the presence of the caspase inhibitor. This suggests that the inhibition of T cell proliferation can be uncoupled from the caspase-inhibitory properties of z-VAD-FMK. Taken together, the immunosuppressive effects in primary T cells mediated by z-VAD-FMK are due to oxidative stress via the depletion of GSH.