Displaying all 2 publications

Abstract:
Sort:
  1. Arockiaraj J, Easwvaran S, Vanaraja P, Singh A, Othman RY, Bhassu S
    Fish Shellfish Immunol, 2012 Jul;33(1):121-9.
    PMID: 22565019 DOI: 10.1016/j.fsi.2012.04.010
    In this study, we have reported a full length of peroxiredoxin (designated MrPrdx) gene, identified from the transcriptome of freshwater prawn Macrobrachium rosenbergii. The complete gene sequence of the MrPrdx is 940 base pairs in length, and encodes 186 amino acids. MrPrdx contains a long thioredoxin domain in the amino acid sequence between 34 and 186. The gene expressions of MrPrdx in healthy and the infectious hypodermal and hematopoietic necrosis virus (IHHNV) challenged M. rosenbergii were examined using quantitative real time polymerase chain reaction. MrPrdx is highly expressed in all the other tissues of M. rosenbergii considered for analysis and the highest in gills. The expression is strongly up-regulated in gills after IHHNV infection. To understand MrPrdx functional properties, the recombinant MrPrdx protein was expressed in Escherichia coli BL21 (DE3) and purified. A peroxidise activity assay was conducted using recombinant MrPrdx protein at different concentrations. This peroxidises activity showed that the recombinant MrPrdx is a thiol-dependant protein. Additionally, this result showed that recombinant MrPrdx protein, as a secretory protein can remove H₂O₂ and protect DNA damage. This finding leads a possible way to propose the recombinant MrPrdx protein as an effective medicine for reactive oxygen species (ROS) related diseases.
    Matched MeSH terms: Peroxiredoxins/genetics*
  2. Dahlan HM, Karsani SA, Rahman MA, Hamid NA, Top AG, Ngah WZ
    J Nutr Biochem, 2012 Jul;23(7):741-51.
    PMID: 21840697 DOI: 10.1016/j.jnutbio.2011.03.018
    Vitamin E has been suggested to modulate age-associated changes by altering the redox balance resulting in altered gene and/or protein expression. Here we have utilized proteomics to determine whether such regulation in protein expression occurs in human lymphocytes from two different age groups stressed with H₂O₂ and then treated with vitamin E in the form of tocotrienol-rich fraction (TRF). In this study, lymphocytes obtained from young (30-49 years old) and old (>50 years old) volunteers were first challenged with 1 mM H₂O₂. They were then treated by exposure to 50, 100 and 200 μg/ml TRF. Two-dimensional gel electrophoresis followed by MALDI-TOF/TOF (matrix-assisted laser desorption/ionization time-of-flight/time-of-flight) tandem mass spectrometry was then performed on whole-cell protein extracts to identify proteins that have changed in expression. A total of 24 proteins were found to be affected by H₂O₂ and/or TRF treatment. These included proteins that were related to metabolism, antioxidants, structural proteins, protein degradation and signal transduction. Of particular interest was the regulation of a number of proteins involved in stress response--peroxiredoxin-2, peroxiredoxin-3 and peroxiredoxin-6-all of which were shown to be down-regulated with H₂O₂ exposure. The effect was reversed following TRF treatment. The expression of peroxiredoxin-2 and peroxiredoxin-6 was confirmed by quantitative reverse transcriptase polymerase chain reaction. These results suggested that TRF directly influenced the expression dynamics of the peroxiredoxin-2, thus improving the cells ability to resist damage caused by oxidative stress.
    Matched MeSH terms: Peroxiredoxins/genetics
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links