Displaying all 3 publications

Abstract:
Sort:
  1. Lee PM, Lee KH, Siaw YS
    PMID: 8260581
    Aminoacylase I (E.C.3.5.1.14) was immobilized by entrapment in calcium alginate beads coated with polyethyleneimine for the production of L-phenylalanine by the hydrolysis of a racemic mixture of N-acetyl-DL-phenylalanine. The operational stability in terms of batch operation and continuous reaction in packed-bed bioreactor were studied. Kinetic constants, Km and Vmax values of free and immobilized enzymes were studied. Polyethyleneimine treatment was found to enhance the operational stability of the enzyme though its activity was substantially reduced. When polyethyleneimine-coated calcium alginate beads were packed into packed bed bioreactor, it was stable for at least 25 days under continuous operation without appreciable loss of activity.
    Matched MeSH terms: Phenylalanine/metabolism*
  2. Choudhary AK, Lee YY
    J Clin Neurosci, 2018 Oct;56:7-15.
    PMID: 30318075 DOI: 10.1016/j.jocn.2018.06.043
    Aspartame (NutraSweet®, Equal®) is a widely used artificial sweetener, has been reported to be accountable for neurological and behavioural disturbances in people. Upon ingestion, aspartame is hydrolyzed in gut and provides its metabolite; such as essential amino acid phenylalanine (Phy) (50%), aspartic acid (40%), and methanol (10%). Altered brain neurochemical compositions [such as dopamine (DA), norepinephrine (NE), and serotonin (5-HT)] have long been a concern and being involved in observed neurophysiological symptom (such as headaches, memory loss, mood changes, as well as depression) in aspartame consumers. Aspartames might act as chemical stressor through increasing plasma cortisol level. Aspartame consumption similarly altered gut microbiota. Taken together all this factors, we reviewed to search for convincing evidence, in what manner aspartame metabolites, stress hormones (cortisol), and gut dysbiosisis involved in altering brain neurochemical composition. We concluded that aspartame metabolite; mainly Phy and its interaction with neurotransmitter and aspartic acid by acting as excitatory neurotransmitter causes this pattern of impairments. Along with elevated cortisol and gut dysbiosis via interactions with different biogenic amine may also have additional impact to modulate neuronal signaling lead to neurobiological impairments. Hence ongoing research is instantly needed to understand the specific roles of aspartame metabolite, elevated cortisol, and gut dysbiosis with emerging neurophysiological symptom in aspartame consumers to improve healthy life in its consumers.
    Matched MeSH terms: Phenylalanine/metabolism
  3. Choudhary AK, Lee YY
    Nutr Neurosci, 2018 Jun;21(5):306-316.
    PMID: 28198207 DOI: 10.1080/1028415X.2017.1288340
    Aspartame (α-aspartyl-l-phenylalanine-o-methyl ester), an artificial sweetener, has been linked to behavioral and cognitive problems. Possible neurophysiological symptoms include learning problems, headache, seizure, migraines, irritable moods, anxiety, depression, and insomnia. The consumption of aspartame, unlike dietary protein, can elevate the levels of phenylalanine and aspartic acid in the brain. These compounds can inhibit the synthesis and release of neurotransmitters, dopamine, norepinephrine, and serotonin, which are known regulators of neurophysiological activity. Aspartame acts as a chemical stressor by elevating plasma cortisol levels and causing the production of excess free radicals. High cortisol levels and excess free radicals may increase the brains vulnerability to oxidative stress which may have adverse effects on neurobehavioral health. We reviewed studies linking neurophysiological symptoms to aspartame usage and conclude that aspartame may be responsible for adverse neurobehavioral health outcomes. Aspartame consumption needs to be approached with caution due to the possible effects on neurobehavioral health. Whether aspartame and its metabolites are safe for general consumption is still debatable due to a lack of consistent data. More research evaluating the neurobehavioral effects of aspartame are required.
    Matched MeSH terms: Phenylalanine/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links