Displaying all 3 publications

Abstract:
Sort:
  1. Joy N, Prasanth VP, Soniya EV
    Genetica, 2011 Aug;139(8):1033-43.
    PMID: 21874534 DOI: 10.1007/s10709-011-9605-x
    The genotypes of black pepper are morphologically and genotypically highly diverse and carry all the cumulative variations inherited and maintained through generations. The present study describes the Simple Sequence Repeat (SSR) or microsatellite based assessment of genetic diversity among forty popular genotypes and four different species of black pepper in Southern region of India. For isolation of SSR primers, our earlier attempts with enrichment strategies like 'Triplex affinity capture' did not extract a single SSR primer due to close proximity of restriction sites to the SSR motif. Hence we developed a 'Sequential Reverse Genome Walking (SRGW)' strategy with better enrichment efficiency of 72% that generated seven new SSR primers. Genotyping precisely discriminated majority of genotypes which indicated that the SSR primers are very informative. A total of 62 alleles with an average of 15.5 alleles over 4 loci were identified. All the SSR primers showed an average Polymorphism Information Content (PIC) value of 0.85. The estimated average Shared Allele Frequency ranged between 1.57 and 20.12%. The PCA plot revealed four closely related individual groups and identified Karimunda, Wild pepper and a local landrace 'local b' as the most divergent genotypes. Cluster analysis exposed the genetic relatedness between hybrids and selections with other known cultivars. The introduction of black pepper from South India to Malaysia was emphasized from the observation of genetic similarity of Malaysian cultivar 'Kuching' with other indigenous popular cultivars. The study was first to portray the precise genetic relatedness among the major indigenous genotypes of black pepper.
    Matched MeSH terms: Piper nigrum/genetics*
  2. Hu L, Xu Z, Wang M, Fan R, Yuan D, Wu B, et al.
    Nat Commun, 2019 10 16;10(1):4702.
    PMID: 31619678 DOI: 10.1038/s41467-019-12607-6
    Black pepper (Piper nigrum), dubbed the 'King of Spices' and 'Black Gold', is one of the most widely used spices. Here, we present its reference genome assembly by integrating PacBio, 10x Chromium, BioNano DLS optical mapping, and Hi-C mapping technologies. The 761.2 Mb sequences (45 scaffolds with an N50 of 29.8 Mb) are assembled into 26 pseudochromosomes. A phylogenomic analysis of representative plant genomes places magnoliids as sister to the monocots-eudicots clade and indicates that black pepper has diverged from the shared Laurales-Magnoliales lineage approximately 180 million years ago. Comparative genomic analyses reveal specific gene expansions in the glycosyltransferase, cytochrome P450, shikimate hydroxycinnamoyl transferase, lysine decarboxylase, and acyltransferase gene families. Comparative transcriptomic analyses disclose berry-specific upregulated expression in representative genes in each of these gene families. These data provide an evolutionary perspective and shed light on the metabolic processes relevant to the molecular basis of species-specific piperine biosynthesis.
    Matched MeSH terms: Piper nigrum/genetics*
  3. Lau ET, Khew CY, Hwang SS
    J Biotechnol, 2020 May 20;314-315:53-62.
    PMID: 32302654 DOI: 10.1016/j.jbiotec.2020.03.014
    Black pepper is an important commodity crop in Malaysia that generates millions of annual revenue for the country. However, black pepper yield is affected by slow decline disease caused by a soil-borne fungus Fusarium solani. RNA sequencing transcriptomics approach has been employed in this study to explore the differential gene expression in susceptible Piper nigrum L. and resistant Piper colubrinum Link. Gene expression comparative analysis of the two pepper species has yielded 2,361 differentially expressed genes (DEGs). Among them, higher expression of 1,426 DEGs was detected in resistant plant. These DEGs practically demonstrated the major branches of plant-pathogen interaction pathway (Path: ko04626). We selected five groups of defence-related DEGs for downstream qRT-PCR analysis. Cf-9, the gene responsible for recognizing fungal avirulence protein activity was found inexpressible in susceptible plant. However, this gene exhibited promising expression in resistant plant. Inactivation of Cf-9 could be the factor that causes susceptible plant fail in recognition of F. solani and subsequently delay activation of adaptive response to fungal invasion. This vital study advance the understanding of pepper plant defence in response to F. solani and aid in identifying potential solution to manage slow decline disease in black pepper cultivation.
    Matched MeSH terms: Piper nigrum/genetics
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links