Displaying all 3 publications

Abstract:
Sort:
  1. Yeang HY, Arif SA, Raulf-Heimsoth M, Loke YH, Sander I, Sulong SH, et al.
    J Allergy Clin Immunol, 2004 Sep;114(3):593-8.
    PMID: 15356563 DOI: 10.1016/j.jaci.2004.05.039
    BACKGROUND:
    Sensitization to natural rubber latex has been linked to proteins from medical latex gloves. Various assays to estimate the amount of residual allergenic proteins extractable from latex gloves to assess their potential exposure hazard have inherent weaknesses.

    OBJECTIVE:
    This investigation was aimed at developing 2-site immunoenzymetric assays and identifying appropriate protein markers to assess the allergenic potential of latex gloves.

    METHODS:
    The presence of 6 latex allergens--Hev b 1, 2, 3, 5, 6, and 13--was measured in a cross-section of commercial latex medical gloves by using monoclonal and polyclonal antibody-based 2-site immunoenzymetric assays. The overall allergenic potential of these gloves was assessed by IgE-inhibition assay. Stepwise multiple regression analyses were performed to identify marker allergens that best explained the variation in latex glove allergenicity.

    RESULTS:
    All 6 latex allergens were detected in at least some of the glove samples. Hev b 5 and Hev b 13 were identified as the marker allergens that combined best to explain the variation in the glove allergenicity. The significant multiple correlation (R=0.855) between these 2 markers and glove allergenic potency forms the basis of an assay to gauge latex glove allergenicity.

    CONCLUSION:
    The overall allergenic potential of latex gloves can be estimated by using Hev b 5 and Hev b 13 as indicator allergens. The correlation between glove allergenicity and the level of these allergens was maintained for low-protein gloves (<200 microg/g). This estimation of glove allergenicity was superior to that obtained by using total protein readings.
    Matched MeSH terms: Plant Proteins/adverse effects
  2. Yeang HY, Chow KS, Yusof F, Arif SA, Chew NP, Loke YH
    J Investig Allergol Clin Immunol, 2000 Jul-Aug;10(4):215-22.
    PMID: 11039838
    Six Hevea brasiliensis latex protein allergens, Hevb 1, Hev b 2, Hev b 3, Hev b 4, and two variants of Hev b 7 (7b and 7c), were purified from Hevea latex, while a seventh protein, Hev b 5, was prepared in recombinant form. The presence of these proteins in glove extracts was indicated by their respective antibodies in the serum of rabbits immunized against the extracts. The relative propensities of IgE binding to the individual latex allergens were compared using sera from latex-allergic patients. IgE recognition of Hev b 4, Hev b 7b, Hev b 5 and Hev b 2 was most frequently encountered, with 75, 61, 31 and 28%, respectively, of the patient sera reacting. Sensitivity to multiple latex proteins was common, and out of the 31 seropositive patients, 23 (74%/ ) had IgE against at least two latex allergens, while 12 (39%) had IgE specific for at least three allergens. Statistical analysis of the data suggested that many patients might have acquired sensitivity to Hev b 2, Hev b 4 and Hev b 7b from a common source. (e.g., from latex products). On the other hand, sensitivity to Hev b 5 and to Hev b 7c were interrelated. It is plausible that sensitivity to these two proteins might have been acquired from sources other than latex products (e.g., from certain foods).
    Matched MeSH terms: Plant Proteins/adverse effects*
  3. Yeang HY, Cheong KF, Sunderasan E, Hamzah S, Chew NP, Hamid S, et al.
    J Allergy Clin Immunol, 1996 Sep;98(3):628-39.
    PMID: 8828541 DOI: 10.1016/s0091-6749(96)70097-0
    Two major water-insoluble proteins are located on the surface of rubber particles in Hevea brasiliensis latex. A 14.6 kd protein (Hev b 1), found mainly on large rubber particles (> 350 mm in diameter), and a 24 kd protein (Hev b 3), found mainly on small rubber particles (average diameter, 70 nm), are recognized by IgE from patients with spina bifida and latex allergy. Although Hev b 1 (also called the rubber elongation factor [REF]) has previously been reported as a major latex allergen, this conclusion has been disputed on the basis of results from other studies. The allergenicity of Hev b 1 is verified in this study by testing the recombinant protein generated from its gene. Because allergenicity is confined to patients with spina bifida and not observed in adults sensitive to latex, it is not a major latex allergen. The identification of Hev b 3 as another allergen originating from rubber particles is confirmed by immunogold labeling and electron microscopy. Observations with the monoclonal antibody USM/RC2 developed against Hev b 3 show that the protein has a tendency to fragment into several polypeptides of lower molecular weight (from 24 kd to about 5 kd) when stored at -20 degrees C. There is also indication of protein aggregation from the appearance of proteins with molecular weights greater than 24 kd. Fragmentation of Hev b 3 is induced immediately on he addition of latex B-serum, which is normally compartmentalized in the lutoids in fresh latex. In the preparation of ammoniated latex (used for the manufacture of latex products), the lutoids are ruptured, and the released B-serum reacts with Hev b 3 on the rubber particles to give rise to an array of low molecular weight polypeptides that are allergenic to patients with spina bifida.
    Matched MeSH terms: Plant Proteins/adverse effects
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links