Displaying all 5 publications

Abstract:
Sort:
  1. Ilias IA, Negishi K, Yasue K, Jomura N, Morohashi K, Baharum SN, et al.
    J Plant Res, 2019 Mar;132(2):159-172.
    PMID: 30341720 DOI: 10.1007/s10265-018-1067-0
    Expansin is a non-enzymatic protein which plays a pivotal role in cell wall loosening by inducing stress relaxation and extension in the plant cell wall. Previous studies on Arabidopsis, Petunia × hybrida, and tomato demonstrated that the suppression of expansin gene expression reduced plant growth but expansin overexpression does not necessarily promotes growth. In this study, both expansin gene suppression and overexpression in dark-grown transgenic Arabidopsis seedlings resulted in reduced hypocotyl length at late growth stages with a more pronounced effect for the overexpression. This defect in hypocotyl elongation raises questions about the molecular effect of expansin gene manipulation. RNA-seq analysis of the transcriptomic changes between day 3 and day 5 seedlings for both transgenic lines found numerous differentially expressed genes (DEGs) including transcription factors and hormone-related genes involved in different aspects of cell wall development. These DEGs imply that the observed hypocotyl growth retardation is a consequence of the concerted effect of regulatory factors and multiple cell-wall related genes, which are important for cell wall remodelling during rapid hypocotyl elongation. This is further supported by co-expression analysis through network-centric approach of differential network cluster analysis. This first transcriptome-wide study of expansin manipulation explains why the effect of expansin overexpression is greater than suppression and provides insights into the dynamic nature of molecular regulation during etiolation.
    Matched MeSH terms: Plant Proteins/physiology*
  2. Kurimoto E, Suzuki M, Amemiya E, Yamaguchi Y, Nirasawa S, Shimba N, et al.
    J Biol Chem, 2007 Nov 16;282(46):33252-33256.
    PMID: 17895249 DOI: 10.1074/jbc.C700174200
    Curculin isolated from Curculigo latifolia, a plant grown in Malaysia, has an intriguing property of modifying sour taste into sweet taste. In addition to this taste-modifying activity, curculin itself elicits a sweet taste. Although these activities have been attributed to the heterodimeric isoform and not homodimers of curculin, the underlying mechanisms for the dual action of this protein have been largely unknown. To identify critical sites for these activities, we performed a mutational and structural study of recombinant curculin. Based on the comparison of crystal structures of curculin homo- and heterodimers, a series of mutants was designed and subjected to tasting assays. Mapping of amino acid residues on the three-dimensional structure according to their mutational effects revealed that the curculin heterodimer exhibits sweet-tasting and taste-modifying activities through its partially overlapping but distinct molecular surfaces. These findings suggest that the two activities of the curculin heterodimer are expressed through its two different modes of interactions with the T1R2-T1R3 heterodimeric sweet taste receptor.
    Matched MeSH terms: Plant Proteins/physiology*
  3. Jamaluddin ND, Rohani ER, Mohd Noor N, Goh HH
    J Plant Res, 2019 Mar;132(2):181-195.
    PMID: 30649676 DOI: 10.1007/s10265-019-01086-x
    Papaya is one of the most nutritional fruits, rich in vitamins, carotenoids, flavonoids and other antioxidants. Previous studies showed phytonutrient improvement without affecting quality in tomato fruit and rapeseed through the suppression of DE-ETIOLATED-1 (DET1), a negative regulator in photomorphogenesis. This study is conducted to study the effects of DET1 gene suppression in papaya embryogenic callus. Immature zygotic embryos were transformed with constitutive expression of a hairpin DET1 construct (hpDET1). PCR screening of transformed calli and reverse transcription quantitative PCR (RT-qPCR) verified that DET1 gene downregulation in two of the positive transformants. High-throughput cDNA 3' ends sequencing on DET1-suppressed and control calli for transcriptomic analysis of global gene expression identified a total of 452 significant (FDR 
    Matched MeSH terms: Plant Proteins/physiology
  4. Wong GR, Mazumdar P, Lau SE, Harikrishna JA
    J Plant Physiol, 2018 Dec;231:219-233.
    PMID: 30292098 DOI: 10.1016/j.jplph.2018.09.018
    Genetic improvement is an important approach for crop improvement towards yield stability in stress-prone areas. Functional analysis of candidate stress response genes can provide key information to allow the selection and modification of improved crop varieties. In this study, the constitutive expression of a banana cDNA, MaRHD3 in Arabidopsis improved the ability of transgenic lines to adapt to drought conditions. Transgenic Arabidopsis plants expressing MaRHD3 had roots with enhanced branching and more root hairs when challenged with drought stress. The MaRHD3 plants had higher biomass accumulation, higher relative water content, higher chlorophyll content and an increase in activity of reactive oxygen species (ROS) scavenging enzymes; SOD, CAT, GR, POD and APX with reduced water loss rates compared to control plants. The analysis of oxidative damage indicated lower cell membrane damage in transgenic lines compared to control plants. These findings, together with data from higher expression of ABF-3 and higher ABA content of drought-stressed transgenic MaRHD3 expressing plants, support the involvement of the ABA signal pathway and ROS scavenging enzyme systems in MaRHD3 mediated drought tolerance.
    Matched MeSH terms: Plant Proteins/physiology
  5. Khew CY, Teo CJ, Chan WS, Wong HL, Namasivayam P, Ho CL
    J Plant Physiol, 2015 Jun 15;182:23-32.
    PMID: 26037695 DOI: 10.1016/j.jplph.2015.05.003
    Brassinosteroid Insensitive 1 (BRI1)-Associated Kinase I (BAK1) has been reported to interact with BRI1 for brassinosteroid (BR) perception and signal transduction that regulate plant growth and development. The aim of this study is to investigate the functions of a rice OsBAK1 homologue, designated as OsI-BAK1, which is highly expressed after heading. Silencing of OsI-BAK1 in rice plants produced a high number of undeveloped green and unfilled grains compared to the untransformed plants. Histological analyses demonstrated that embryos were either absent or retarded in their development in these unfilled rice grains of OsI-BAK1 RNAi plants. Down regulation of OsI-BAK1 caused a reduction in cell number and enlargement in leaf bulliform cells. Furthermore, transgenic rice plants overexpressing OsI-BAK1 were demonstrated to have corrugated and twisted leaves probably due to increased cell number that caused abnormal bulliform cell structure which were enlarged and plugged deep into leaf epidermis. The current findings suggest that OsI-BAK1 may play an important role in the developmental processes of rice grain filling and leaf cell including the bulliform cells.
    Matched MeSH terms: Plant Proteins/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links