Displaying all 2 publications

Abstract:
Sort:
  1. Nikbin S, Panandam JM, Yaakub H, Murugaiyah M, Sazili AQ
    Anim. Reprod. Sci., 2014 May;146(3-4):176-81.
    PMID: 24674824 DOI: 10.1016/j.anireprosci.2014.03.001
    The semen quality of bucks affects the reproduction performance of the herd and is influenced by genetic and non-genetic factors. Heat shock protein 70 (HSP70) is considered as an important gene affecting semen quality traits. The objectives of this study are to find single nucleotide polymorphisms in HSP70 coding region and their association with semen quality traits on Boer and Boer cross bucks. DNA isolated from 53 goats (36 pure South African Boer and 17 Boer crosses) was subjected to PCR amplification of the exon 1 region of the caprine HSP70 gene. Single-strand conformation polymorphism (SSCP) was used to detect polymorphisms and the variant DNA fragments were sequenced. Two synonymous SNPs (74A>C (ss836187517) and 191C>G (ss836187518)) were detected. Qualities of fresh and post-thaw semen were evaluated for sperm concentration, semen volume, sperm motility and velocity traits, live sperm percentage, and abnormal sperm rate. The C allele of ss836187517 and G allele of ss836187518 were at higher frequencies in both the breeds. The C allele of ss836187517 appeared to be the favorable allele for semen concentration, progressive motility of fresh semen, and motility and sperm lateral head displacement of post-thaw semen. A negative overdominance was observed for ss836187517 alleles on velocity traits of post-thaw semen. The C allele of ss836187518 was favorable for sperm concentration and progressive motility. Results herein suggest that the SNPs in HSP70 may affect on semen quality in tropical regions and specially on the potential of semen for freezing.
    Matched MeSH terms: Polymorphism, Single Nucleotide/physiology*
  2. Tiong KH, Yiap BC, Tan EL, Ismail R, Ong CE
    Drug Metab. Dispos., 2010 May;38(5):745-51.
    PMID: 20139165 DOI: 10.1124/dmd.109.031054
    Variation in CYP2A6 levels and activity can be attributed to genetic polymorphism and, thus, functional characterization of allelic variants is necessary to define the importance of CYP2A6 polymorphism in humans. The aim of the present study was to investigate the reported alleles CYP2A6*15, CYP2A6*16, CYP2A6*21, and CYP2A6*22, in terms of the functional consequences of their mutations on the enzyme catalytic activity. With use of the wild-type CYP2A6 cDNA as template, site-directed mutagenesis was performed to introduce nucleotide changes encoding K194E substitution in CYP2A6*15, R203S substitution in CYP2A6*16, K476R substitution in CYP2A6*21, and concurrent D158E and L160I substitutions in CYP2A6*22. Upon sequence verification, the CYP2A6 wild-type and mutant constructs were individually coexpressed with NADPH-cytochrome P450 reductase in Escherichia coli. A kinetic study using a coumarin 7-hydroxylase assay indicated that CYP2A6*15 exhibited higher V(max) than the wild type, whereas all mutant constructs, except for variant CYP2A6*16, exhibited higher K(m) values. Analysis of the V(max)/K(m) ratio revealed that all mutants demonstrated 0.85- to 1.05-fold differences from the wild type, with the exception of variant CYP2A6*22, which only portrayed 39% of the wild-type intrinsic clearance. These data suggested that individuals carrying the CYP2A6*22 allele are likely to have lower metabolism of CYP2A6 substrate than individuals expressing CYP2A6*15, CYP2A6*16, CYP2A6*21, and the wild type.
    Matched MeSH terms: Polymorphism, Single Nucleotide/physiology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links