Displaying all 5 publications

Abstract:
Sort:
  1. Gan CS, Lim PJ, Razif MF, Yusof R, Othman S
    Rev Soc Bras Med Trop, 2017 Jan-Feb;50(1):99-103.
    PMID: 28327809 DOI: 10.1590/0037-8682-0207-2016
    INTRODUCTION:: Infection with all serotypes of dengue virus (DV) results in augmented antigen presentation by MHC class I molecules. However, the upregulation of immunoproteasome subunits only results from infection with two serotypes. This study aims to elucidate changes in the expression of immunoproteasome subunits resulting from infection with DV, particularly DV serotype 2 (DV2).

    METHODS:: HepG2 cells were grown in various culture milieu. Total cellular RNA and proteins were extracted and quantified.

    RESULTS:: Results demonstrated sequestration of immunoproteasome subunits LMP2 and LMP7 in DV2-infected cells.

    CONCLUSIONS:: This study provides insights into the mechanisms underlying immune evasion by DV.
    Matched MeSH terms: Proteasome Endopeptidase Complex/metabolism*
  2. Ng CH, Kong SM, Tiong YL, Maah MJ, Sukram N, Ahmad M, et al.
    Metallomics, 2014 Apr;6(4):892-906.
    PMID: 24549332 DOI: 10.1039/c3mt00276d
    Copper compounds can be alternatives to platinum-based anticancer drugs. This study investigated the effects of a series of ternary copper(II) complexes, [Cu(phen)(aa)(H2O)]NO3·xH2O 1-4 (phen = 1,10-phenanthroline; aa = gly (1), DL-ala (2), sar (3), C-dmg (4)), on metastatic and cisplatin-resistant MDA-MB-231 breast cancer cells and MCF10A non-cancerous breast cells, and some aspects of the mechanisms. These complexes were distinctively more antiproliferative towards and induced greater apoptotic cell death in MDA-MB-231 than in MCF10A cells. 2 and 4 could induce cell cycle arrest only in cancer cells. Further evidence from DCFH-DA assay showed higher induction of reactive oxygen species (ROS) in treated cancer cells but minimal ROS increase in normal cells. DNA double-strand breaks, via a γ-H2AX assay, were only detected in cancer cells treated with 5 μM of the complexes. These complexes poorly inhibited chymotrypsin-like activity in the 20S rabbit proteasome while they did not inhibit the three proteolytic sites of MDA-MB-231 cells at 10 μM. However, the complexes could inhibit degradation of ubiquinated proteins of MDA-MB-231 cells. In addition, compound 4 was found to be effective against cervical (Hela), ovarian (SKOV3), lung (A549, PC9), NPC (Hone1, HK1, C666-1), breast (MCF7, T47D), lymphoma and leukemia (Nalmawa, HL60) and colorectal (SW480, SW48, HCT118) cancer cell lines with IC50 values (24 h) in the 1.7-19.0 μM range. Single dose NCI60 screening of 4 showed the complex to be highly cytotoxic to most cancer cell types and more effective than cisplatin.
    Matched MeSH terms: Proteasome Endopeptidase Complex/metabolism
  3. Bhowmick S, Chakravarty C, Sellathamby S, Lal SK
    Arch Virol, 2017 Apr;162(4):919-929.
    PMID: 27942972 DOI: 10.1007/s00705-016-3153-8
    The matrix protein 2 (M2) is a spliced product of segment 7 genome of influenza A virus. Previous studies indicate its role in uncoating of the viral ribonucleoprotein complex during viral entry and in membrane scission while budding. Despite its crucial role in the viral life cycle, little is known about its subcellular distribution and dynamics. In this study, we have shown that the M2 protein is translocated from the membrane to the cytoplasm by a retrograde route via endosomes and the Golgi network. It utilizes retromer cargo while moving from the endosome to the trans-Golgi network and prevents endosome fusion with the lysosome. Further, M2 interacts with the endoplasmic-reticulum-resident AAA-ATPase p97 for its release into the cytoplasm. Our study also revealed that the M2 protein in the cellular milieu does not undergo ubiquitin-mediated proteasomal degradation. The migration of M2 through this pathway inside the infected cell suggests possible new roles that the M2 protein may have in the host cytoplasm, apart from its previously described functions.
    Matched MeSH terms: Proteasome Endopeptidase Complex/metabolism*
  4. Kar R, Jha SK, Ojha S, Sharma A, Dholpuria S, Raju VSR, et al.
    Cancer Rep (Hoboken), 2021 08;4(4):e1369.
    PMID: 33822486 DOI: 10.1002/cnr2.1369
    BACKGROUND: Ubiquitin ligases or E3 ligases are well programmed to regulate molecular interactions that operate at a post-translational level. Skp, Cullin, F-box containing complex (or SCF complex) is a multidomain E3 ligase known to mediate the degradation of a wide range of proteins through the proteasomal pathway. The three-dimensional domain architecture of SCF family proteins suggests that it operates through a novel and adaptable "super-enzymatic" process that might respond to targeted therapeutic modalities in cancer.

    RECENT FINDINGS: Several F-box containing proteins have been characterized either as tumor suppressors (FBXW8, FBXL3, FBXW8, FBXL3, FBXO1, FBXO4, and FBXO18) or as oncogenes (FBXO5, FBXO9, and SKP2). Besides, F-box members like βTrcP1 and βTrcP2, the ones with context-dependent functionality, have also been studied and reported. FBXW7 is a well-studied F-box protein and is a tumor suppressor. FBXW7 regulates the activity of a range of substrates, such as c-Myc, cyclin E, mTOR, c-Jun, NOTCH, myeloid cell leukemia sequence-1 (MCL1), AURKA, NOTCH through the well-known ubiquitin-proteasome system (UPS)-mediated degradation pathway. NOTCH signaling is a primitive pathway that plays a crucial role in maintaining normal tissue homeostasis. FBXW7 regulates NOTCH protein activity by controlling its half-life, thereby maintaining optimum protein levels in tissue. However, aberrations in the FBXW7 or NOTCH expression levels can lead to poor prognosis and detrimental outcomes in patients. Therefore, the FBXW7-NOTCH axis has been a subject of intense study and research over the years, especially around the interactome's role in driving cancer development and progression. Several studies have reported the effect of FBXW7 and NOTCH mutations on normal tissue behavior. The current review attempts to critically analyze these mutations prognostic value in a wide range of tumors. Furthermore, the review summarizes the recent findings pertaining to the FBXW7 and NOTCH interactome and its involvement in phosphorylation-related events, cell cycle, proliferation, apoptosis, and metastasis.

    CONCLUSION: The review concludes by positioning FBXW7 as an effective diagnostic marker in tumors and by listing out recent advancements made in cancer therapeutics in identifying protocols targeting the FBXW7-NOTCH aberrations in tumors.

    Matched MeSH terms: Proteasome Endopeptidase Complex/metabolism
  5. Abd-Aziz N, Stanbridge EJ, Shafee N
    J Gen Virol, 2016 Dec;97(12):3174-3182.
    PMID: 27902314 DOI: 10.1099/jgv.0.000623
    Newcastle disease virus (NDV) is a candidate agent for oncolytic virotherapy. Despite its potential, the exact mechanism of its oncolysis is still not known. Recently, we reported that NDV exhibited an increased oncolytic activity in hypoxic cancer cells. These types of cells negatively affect therapeutic outcome by overexpressing pro-survival genes under the control of the hypoxia-inducible factor (HIF). HIF-1 is a heterodimeric transcriptional factor consisting of a regulated α (HIF-1α) and a constitutive β subunit (HIF-1β). To investigate the effects of NDV infection on HIF-1α in cancer cells, the osteosarcoma (Saos-2), breast carcinoma (MCF-7), colon carcinoma (HCT116) and fibrosarcoma (HT1080) cell lines were used in the present study. Data obtained showed that a velogenic NDV infection diminished hypoxia-induced HIF-1α accumulation, leading to a decreased activation of its downstream target gene, carbonic anhydrase 9. This NDV-induced downregulation of HIF-1α occurred post-translationally and was partially abrogated by proteasomal inhibition. The process appeared to be independent of the tumour suppressor protein p53. These data revealed a correlation between NDV infection and HIF-1α downregulation, which highlights NDV as a promising agent to eliminate hypoxic cancer cells.
    Matched MeSH terms: Proteasome Endopeptidase Complex/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links