Displaying all 2 publications

Abstract:
Sort:
  1. Husain I, Ahmad W, Ali A, Anwar L, Nuruddin SM, Ashraf K, et al.
    CNS Neurol Disord Drug Targets, 2021;20(7):613-624.
    PMID: 33530918 DOI: 10.2174/1871527320666210202121624
    A proteome is defined as a comprehensive protein set either of an organ or an organism at a given time and under specific physiological conditions. Accordingly, the study of the nervous system's proteomes is called neuroproteomics. In the neuroproteomics process, various pieces of the nervous system are "fragmented" to understand the dynamics of each given sub-proteome in a much better way. Functional proteomics addresses the organisation of proteins into complexes and the formation of organelles from these multiprotein complexes that control various physiological processes. Current functional studies of neuroproteomics mainly talk about the synapse structure and its organisation, the major building site of the neuronal communication channel. The proteomes of synaptic vesicle, presynaptic terminal, and postsynaptic density, have been examined by various proteomics techniques. The objectives of functional neuroproteomics are: to solve the proteome of single neurons or astrocytes grown in cell cultures or from the primary brain cells isolated from tissues under various conditions, to identify the set of proteins that characterize specific pathogenesis, or to determine the group of proteins making up postsynaptic or presynaptic densities. It is usual to solve a particular sub-proteome like the heat-shock response proteome or the proteome responding to inflammation. Post-translational protein modifications alter their functions and interactions. The techniques to detect synapse phosphoproteome are available. However, techniques for the analysis of ubiquitination and sumoylation are under development.
    Matched MeSH terms: Protein Processing, Post-Translational/physiology
  2. Habib MAH, Gan CY, Abdul Latiff A, Ismail MN
    Biochem. Cell Biol., 2018 12;96(6):818-824.
    PMID: 30058361 DOI: 10.1139/bcb-2018-0020
    The natural rubber latex extracted from the bark of Hevea brasiliensis plays various important roles in modern society. Post-translational modifications (PTMs) of the latex proteins are important for the stability and functionality of the proteins. In this study, latex proteins were acquired from the C-serum, lutoids, and rubber particle layers of latex without using prior enrichment steps; they were fragmented using collision-induced dissociation (CID), higher-energy collisional dissociation (HCD), and electron-transfer dissociation (ETD) activation methods. PEAKS 7 were used to search for unspecified PTMs, followed by analysis through PTM prediction tools to crosscheck both results. There were 73 peptides in 47 proteins from H. brasiliensis protein sequences derived from UniProtKB were identified and predicted to be post-translationally modified. The peptides with PTMs identified include phosphorylation, lysine acetylation, N-terminal acetylation, hydroxylation, and ubiquitination. Most of the PTMs discovered have yet to be reported in UniProt, which would provide great assistance in the research of the functional properties of H. brasiliensis latex proteins, as well as being useful biomarkers. The data are available via the MassIVE repository with identifier MSV000082419.
    Matched MeSH terms: Protein Processing, Post-Translational/physiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links