Objectives: We report the first use of a biorestorative valved conduit (Xeltis pulmonary valve-XPV) in children. Based on early follow-up data the valve design was modified; we report on the comparative performance of the two designs at 12 months post-implantation. Methods: Twelve children (six male) median age 5 (2 to 12) years and weight 17 (10 to 43) kg, had implantation of the first XPV valve design (XPV-1, group 1; 16 mm (n = 5), and 18 mm (n = 7). All had had previous surgery. Based on XPV performance at 12 months, the leaflet design was modified and an additional six children (five male) with complex malformations, median age 5 (3 to 9) years, and weight 21 (14 to 29) kg underwent implantation of the new XPV (XPV-2, group 2; 18 mm in all). For both subgroups, the 12 month clinical and echocardiographic outcomes were compared. Results: All patients in both groups have completed 12 months of follow-up. All are in NYHA functional class I. Seventeen of the 18 conduits have shown no evidence of progressive stenosis, dilation or aneurysm formation. Residual gradients of >40 mm Hg were observed in three patients in group 1 due to kinking of the conduit (n = 1), and peripheral stenosis of the branch pulmonary arteries (n = 2). In group 2, one patient developed rapidly progressive stenosis of the proximal conduit anastomosis, requiring conduit replacement. Five patients in group 1 developed severe pulmonary valve regurgitation (PI) due to prolapse of valve leaflet. In contrast, only one patient in group 2 developed more than mild PI at 12 months, which was not related to leaflet prolapse. Conclusions: The XPV, a biorestorative valved conduit, demonstrated promising early clinical outcomes in humans with 17 of 18 patients being free of reintervention at 1 year. Early onset PI seen in the XPV-1 version seems to have been corrected in the XPV-2, which has led to the approval of an FDA clinical trial. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT02700100 and NCT03022708.
Valved allografts and xenografts for reconstruction of the right ventricular outflow tract (RVOT) lack durability and do not grow. We report the first clinical use of a completely bioabsorbable valved conduit (Xeltis pulmonary valve - XPV) in children. Twelve children (six male), median age five (two to twelve) years and median weight 17 (10 to 43) kg, underwent RVOT reconstruction with the XPV. Diagnoses were: pulmonary atresia with ventricular septal defect (VSD) (n=4), tetralogy of Fallot (n=4), common arterial trunk (n=3), and transposition of the great arteries with VSD and pulmonary stenosis (n=1). All had had previous surgery, including prior RVOT conduit implantation in six. Two diameters of conduit 16mm (n=5) and 18mm (n=7) were used. At 24 months none of the patients has required surgical re-intervention, 9 of the 12 are in NYHA functional class I and three patients in NYHA class II. None of the conduits has shown evidence of progressive stenosis, dilation or aneurysm formation. Residual peak gradient of >40 mm Hg was observed in three patients, caused by kinking of the conduit at implantation in 1 and distal stenosis in the peripheral pulmonary arteries in 2 patients. Five patients developed severe pulmonary valve insufficiency (PI); the most common mechanism was prolapse of at least one of the valve leaflets. The XPV conduit is a promising innovation for RVOT reconstruction. Progressive PI requires however an improved design (geometry, thickness) of the valve leaflets.