Displaying all 2 publications

Abstract:
Sort:
  1. Monajemi H, M Zain S, Wan Abdullah WAT
    PMID: 34047250 DOI: 10.1080/15257770.2021.1923742
    The translational accuracy in protein synthesis is contributed to by several mechanisms in the ribosome, generally called kinetic proofreading. This process in the ribosome inhibits the non-cognate codon-anticodon interaction. However, it is not sufficient for fidelity of protein synthesis since a wrong amino acid can easily be added to the growing polypeptide chain if a tRNA while cognate to the mRNA, carries a non-cognate amino acid. Therefore, additional to the kinetic proofreading, there must be some hitherto unknown characteristic in misacylated-tRNAs to stop the process of protein synthesis if such misacylated-tRNA is accommodated in the ribosomal A-site. In order to understand this characteristic, we have performed computational quantum chemistry analysis on five different tRNA molecules, each one attached to five different amino acids with one being cognate to the tRNA and the other four non-cognate. This study shows the importance of aminoacyl-tRNA binding energy in ensuring fidelity of protein synthesis.
    Matched MeSH terms: RNA, Transfer, Amino Acyl/metabolism
  2. Monajemi H, Daud MN, Mohd Zain S, Wan Abdullah WA
    Biochem. Cell Biol., 2012 Dec;90(6):691-700.
    PMID: 23016605 DOI: 10.1139/o2012-027
    Finding a proper transition structure for the peptide bond formation process can lead one to a better understanding of the role of ribosome in catalyzing this reaction. Using computer simulations, we performed the potential energy surface scan on the ester bond dissociation of P-site aminoacyl-tRNA and the peptide bond formation of P-site and A-site amino acids. The full fragments of initiator tRNA(i)(met) and elongator tRNA(phe) are attached to both cognate and non-cognate amino acids as the P-site substrate. The A-site amino acid for all four calculations is methionine. We used ONIOM calculations to reduce the computational cost. Our study illustrates the reduced rate of peptide bond formation for misacylated tRNA(i)(met) in the absence of ribosomal bases. The misacylated elongator tRNA(phe), however, did not show any difference in its PES compared with that for the phe-tRNA(phe). This demonstrates the structural specification of initiator tRNA(i)(met) for the amino acids side chain.
    Matched MeSH terms: RNA, Transfer, Amino Acyl/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links