Displaying all 2 publications

Abstract:
Sort:
  1. Abdullah NL, Mohd-Zin SW, Ahmad-Annuar A, Abdul-Aziz NM
    Front Cell Dev Biol, 2017;5:105.
    PMID: 29312933 DOI: 10.3389/fcell.2017.00105
    Members of the Eph receptor tyrosine kinase have previously been implicated in cranial neural tube development. Failure of neural tube closure leads to the devastating conditions known as anencephaly and spina bifida. EphA2 and EphA4 are expressed at the tips of the closing spinal neural folds prior and during neural tube closure. We investigated the possible role of murine EphA2 and EphA4 during the last step of primary neural tube closure, which is adhesion and fusion. The individual mouse knockouts of EphA2 and EphA4 per se do not exhibit neural tube defects (NTDs). The embryos generated by the crossing of double heterozygotes Epha2tm1Jrui/+Epha4rb-2J/+ displayed NTDs with a wide degree of severity including close exencephaly and close spina bifida (spina bifida occulta). Interestingly, mutants displaying NTDs had skin covering the underlying lesion. The tissue sections revealed the elevated neural folds had not adhered and fused. The phenotypes seen in Epha2tm1Jrui/+Epha4rb-2J/+ double heterozygous embryos suggest both genes play a compensatory role with each other in the adhesion and fusion of the neural tube. In this study, there exists a >50% penetrance of NTDs in the mouse mutants, which genetically have a single allele each of EphA2 and EphA4 absent.
    Matched MeSH terms: Receptors, Eph Family
  2. Hoque AF, Rahman MM, Lamia AS, Islam A, Klena JD, Satter SM, et al.
    Infect Genet Evol, 2023 Dec;116:105516.
    PMID: 37924857 DOI: 10.1016/j.meegid.2023.105516
    Nipah virus (NiV) is a lethal bat-borne zoonotic virus that causes mild to acute respiratory distress and neurological manifestations in humans with a high mortality rate. NiV transmission to humans occurs via consumption of bat-contaminated fruit and date palm sap (DPS), or through direct contact with infected individuals and livestock. Since NiV outbreaks were first reported in pigs from Malaysia and Singapore, non-neutralizing antibodies against NiV attachment Glycoprotein (G) have also been detected in a few domestic mammals. NiV infection is initiated after NiV G binds to the host cell receptors Ephrin-B2 and Ephrin-B3. In this study, we assessed the degree of NiV host tropism in domestic and peridomestic mammals commonly found in Bangladesh that may be crucial in the transmission of NiV by serving as intermediate hosts. We carried out a protein-protein docking analysis of NiV G complexes (n = 52) with Ephrin-B2 and B3 of 13 domestic and peridomestic species using bioinformatics tools. Protein models were generated by homology modelling and the structures were validated for model quality. The different protein-protein complexes in this study were stable, and their binding affinity (ΔG) scores ranged between -8.0 to -19.1 kcal/mol. NiV Bangladesh (NiV-B) strain displayed stronger binding to Ephrin receptors, especially with Ephrin-B3 than the NiV Malaysia (NiV-M) strain, correlating with the observed higher pathogenicity of NiV-B strains. From the docking result, we found that Ephrin receptors of domestic rat (R. norvegicus) had a higher binding affinity for NiV G, suggesting greater susceptibility to NiV infections compared to other study species. Investigations for NiV exposure to domestic/peridomestic animals will help us knowing more the possible role of rats and other animals as intermediate hosts of NiV and would improve future NiV outbreak control and prevention in humans and domestic animals.
    Matched MeSH terms: Receptors, Eph Family/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links