Epilepsy is a complex neurological disease that can be caused by both genetic and environmental factors. Many studies have been conducted to investigate the genetic risk variants and molecular mechanisms of epilepsy. Disruption of excitation-inhibition balance (E/I balance) is one of the widely accepted disease mechanisms of epilepsy. The maintenance of E/I balance is an intricate process that is governed by multiple proteins. Using whole exome sequencing (WES), we identified a novel GABRA1 c.448G>A (p.E150K) variant and ERBB4 c.1972A>T (p.I658F, rs190654033) variant in a Malaysian Chinese family with genetic generalized epilepsy (GGE). The GGE may be triggered by dysregulation of E/I balance mechanism. Segregation of the variants in the family was verified by Sanger sequencing. All family members with GGE inherited both variants. However, family members who carried only one of the variants did not show any symptoms of GGE. Both the GABRA1 and ERBB4 variants were predicted damaging by MutationTaster and CADD, and protein structure analysis showed that the variants had resulted in the formation of additional hydrogen bonds in the mutant proteins. GABRA1 variant could reduce the efficiency of GABAA receptors, and constitutively active ERBB4 receptors caused by the ERBB4 variant promote internalization of GABAA receptors. The interaction between the two variants may cause a greater disruption in E/I balance, which is more likely to induce a seizure. Nevertheless, this disease model was derived from a single small family, further studies are still needed to confirm the verifiability of the purported disease model.
TylP is one of five regulatory proteins involved in the regulation of antibiotic (tylosin) production, morphological and physiological differentiation in Streptomyces fradiae. Its function is similar to those of various γ-butyrolactone receptor proteins. In this report, N-terminally His-tagged recombinant TylP protein (rTylP) was overproduced in Escherichia coli and purified to homogeneity. The rTylP protein was crystallized from a reservoir solution comprising 34%(v/v) ethylene glycol and 5%(v/v) glycerol. The protein crystals diffracted X-rays to 3.05 Å resolution and belonged to the trigonal space group P3121, with unit-cell parameters a = b = 126.62, c = 95.63 Å.
Novel treatments against migraine are an urgent medical requirement. The α6 subunit-containing GABAA receptors (α6GABAARs) are expressed in trigeminal ganglia (TG), the hub of the trigeminal vascular system (TGVS) that is involved in the pathogenesis of migraine. Here we reveal an unprecedented role of α6GABAARs in ameliorating TGVS activation using several pharmacological approaches in an animal model mimicking pathological changes in migraine. TGVS activation was induced by intra-cisternal (i.c.) instillation of capsaicin in Wistar rats. Centrally, i.c. capsaicin activated the trigeminal cervical complex (TCC) measured by the increased number of c-Fos-immunoreactive (c-Fos-ir) TCC neurons. Peripherally, it elevated calcitonin gene-related peptide immunoreactivity (CGRP-ir) in TG and depleted CGRP-ir in the dura mater. Pharmacological approaches included a recently identified α6GABAAR-selective positive allosteric modulator (PAM), the pyrazoloquinolinone Compound 6, two α6GABAAR-active PAMs (Ro15-4513 and loreclezole), an α6GABAAR-inactive benzodiazepine (diazepam), an α6GABAAR-selective antagonist (furosemide), and a clinically effective antimigraine agent (topiramate). We examined effects of these compounds on both central and peripheral TGVS responses induced by i.c. capsaicin. Compound 6 (3-10 mg/kg, i.p.) significantly attenuated the TCC neuronal activation and TG CGRP-ir elevation, and dural CGRP depletion induced by capsaicin. All these effects of Compound 6 were mimicked by topiramate, Ro15-4513 and loreclezole, but not by diazepam. The brain-impermeable furosemide antagonized the peripheral, but not central, effects of Compound 6. These results suggest that the α6GABAAR in TG is a novel drug target for TGVS activation and that α6GABAAR-selective PAMs have the potential to be developed as a novel pharmacotherapy for migraine.