Displaying all 3 publications

Abstract:
Sort:
  1. Liu R, Hu X, Lü A, Song Y, Lian Z, Sun J, et al.
    Zebrafish, 2020 04;17(2):91-103.
    PMID: 32176570 DOI: 10.1089/zeb.2019.1843
    Spring viremia of carp virus (SVCV) causes the skin hemorrhagic disease in cyprinid species, but its molecular mechanism of skin immune response remains unclear at the protein level. In the present study, the differential proteomics of the zebrafish (Danio rerio) skin in response to SVCV infection were examined by isobaric tags for relative and absolute quantitation and quantitative polymerase chain reaction (qPCR) assays. A total of 3999 proteins were identified, of which 320 and 181 proteins were differentially expressed at 24 and 96 h postinfection, respectively. The expression levels of 16 selected immune-related differentially expressed proteins (DEPs) were confirmed by qPCR analysis. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that DEPs were significantly associated with complement, inflammation, and antiviral response. The protein-protein interaction network of cytoskeleton-associated proteins, ATPase-related proteins, and parvalbumins from DEPs was shown to be involved in skin immune response. This is first report on the skin proteome profiling of zebrafish against SVCV infection, which will contribute to understand the molecular mechanism of local mucosal immunity in fish.
    Matched MeSH terms: Rhabdoviridae Infections/veterinary*
  2. Blasdell KR, Davis SS, Voysey R, Bulach DM, Middleton D, Williams S, et al.
    Vet Res, 2020 Apr 29;51(1):58.
    PMID: 32349781 DOI: 10.1186/s13567-020-00781-1
    Bovine ephemeral fever is a vector-borne disease of ruminants that occurs in tropical and sub-tropical regions of Africa, Asia and Australia. The disease is caused by a rhabdovirus, bovine ephemeral fever virus (BEFV), which occurs as a single serotype globally. Although several other closely related ephemeroviruses have been isolated from cattle and/or arthropods, only kotonkan virus from Nigeria and (tentatively) Mavingoni virus from Mayotte Island in the Indian Ocean have been previously associated with febrile disease. Here, we report the isolation of a novel virus (Hayes Yard virus; HYV) from blood collected in February 2000 from a bull (Bos indicus) in the Northern Territory of Australia. The animal was suffering from a severe ephemeral fever-like illness with neurological involvement, including recumbency and paralysis, and was euthanised. Histological examination of spinal cord and lung tissue identified extensive haemorrhage in the dura mata with moderate perineuronal oedema and extensive emphysema. HYV displayed cone-shaped morphology, typical of rhabdoviruses, and was found to be most closely related antigenically to Puchong virus (PUCV), isolated in 1965 from mosquitoes in Malaysia. Analysis of complete genome sequences of HYV (15 025 nt) and PUCV (14 932 nt) indicated that each has a complex organisation (3' N-P-M-G-GNS-α1-α2-β-γ-L 5') and expression strategy, similar to that of BEFV. Based on an alignment of complete L protein sequences, HYV and PUCV cluster with other rhabdoviruses in the genus Ephemerovirus and appear to represent two new species. Neutralising antibody to HYV was also detected in a retrospective survey of cattle sera collected in the Northern Territory.
    Matched MeSH terms: Rhabdoviridae Infections/veterinary*
  3. Mackenzie JS, Field HE
    PMID: 15119765
    Three newly recognized encephalitogenic zoonotic viruses spread from fruit bats of the genus Pteropus (order Chiroptera, suborder Megachiroptera) have been recognised over the past decade. These are: Hendra virus, formerly named equine morbillivirus, which was responsible for an outbreak of disease in horses and humans in Brisbane, Australia, in 1994; Australian bat lyssavirus, the cause of a severe acute encephalitis, in 1996; and Nipah virus, the cause of a major outbreak of encephalitis and pulmonary disease in domestic pigs and people in peninsula Malaysia in 1999. Hendra and Nipah viruses have been shown to be the first two members of a new genus, Henipavirus, in the family Paramyxoviridae, subfamily Paramyxovirinae, whereas Australian bat lyssavirus is closely related antigenically to classical rabies virus in the genus Lyssavirus, family Rhabdoviridae, although it can be distinguished on genetic grounds. Hendra and Nipah viruses have neurological and pneumonic tropisms. The first humans and equids with Hendra virus infections died from acute respiratory disease, whereas the second human patient died from an encephalitis. With Nipah virus, the predominant clinical syndrome in humans was encephalitic rather than respiratory, whereas in pigs, the infection was characterised by acute fever with respiratory involvement with or without neurological signs. Two human infections with Australian bat lyssavirus have been reported, the clinical signs of which were consistent with classical rabies infection and included a diffuse, non-suppurative encephalitis. Many important questions remain to be answered regarding modes of transmission, pathogenesis, and geographic range of these viruses.
    Matched MeSH terms: Rhabdoviridae Infections/veterinary
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links