Little data are available on the prevalence and transmission of vector-borne diseases in stray dogs in Peninsular Malaysia. This study was designed to determine the occurrence of vector-borne pathogens in Malaysian stray dogs using serological and molecular approaches. In total, 48 dog blood samples were subjected to serological analysis using SNAP 4Dx kit (IDEXX Laboratories, Westbrook, ME). The presence of Ehrlichia and Anaplasma DNA in the dog blood samples and Rhipicephalus sanguineus (Latreille) ticks was detected using nested polymerase chain reaction assays. Positive serological findings against Ehrlichia canis and Anaplasma phagocytophilum were obtained in 17 (39.5%) and four (9.3%) of 43 dog samples, respectively. None of the dog blood samples were positive for Borrelia burgdorferi and Dirofilaria immitis. DNA of E. canis and A. phagocytophilum was detected in 12 (25.5%) and two (4.3%) of 47 dog blood samples, and 17 (51.5%) and one (3.0%) of 33 R. sanguineus ticks, respectively. Additionally, DNA of Ehrlichia spp. closely related to Ehrlichia chaffeensis was detected in two (6.1%) R. sanguineus ticks. This study highlights the prevalence of anaplasmosis and ehrlichiosis in dogs in Malaysia. Due to the zoonotic potential of Ehrlichia and Anaplasma spp., appropriate measures should be instituted for prevention and control of vector-borne diseases in dogs.
A total of 44 Rhipicephalus sanguineus ticks collected from 23 dogs from Malaysia were screened for Rickettsia, Anaplasmataceae and Coxiella burnetii. Coxiella burnetii was detected in 59% (26/44) of ticks however Rickettsia and Anaplasmataceae were not detected in any of the ticks. In order to genotype the strains of C. burnetii, multispacer sequence typing (MST) was carried out using three different spacers. One of the spacers; Cox2 successfully amplified a fragment for which the full length sequence of 397 bp was obtained. The sequenced product revealed only a single nucleotide difference with the Cox2.3 type sequence.
Ticks are important vectors in transmitting various pathogens and they could jeopardize the health and welfare of humans and animals worldwide. The present study aimed to investigate the presence of important tick-borne haemopathogens (TBH) in dogs and ticks via polymerase chain reaction (PCR) assays. A total of 220 blood samples and 140 ticks were collected from 10 animal shelters in Peninsular Malaysia. Of 220 blood samples, 77 (35 %) were positive to TBH, of which 20 % were E. canis, 12 % were A. platys, 7 % were B. gibsoni and 7 % were B. vogeli. All ticks were identified as Rhipicephalus sanguineus with five samples (3.57 %) positive with TBH. Co-infections of TBH (0.45-9.55 %) in dogs were also observed in this study.
Ehrlichia canis is among the most prevalent tick-borne pathogens infecting dogs worldwide, being primarily vectored by brown dog ticks, Rhipicephalus sanguineus sensu lato (s.l.). The genetic variability of E. canis has been assessed by analysis of different genes (e.g., disulfide bond formation protein gene, glycoprotein 19, tandem repeat protein 36 - TRP36) in the Americas, Africa, Asia, and in a single dog sample from Europe (i.e., Spain). This study was aimed to assess the variations in the TRP36 gene of E. canis detected in naturally infected canids and R. sanguineus s.l. ticks from different countries in Asia and Europe. DNA samples from dogs (n = 644), foxes (n = 146), and R. sanguineus s.l. ticks (n = 658) from Austria, Italy, Iran, Pakistan, India, Indonesia, Malaysia, the Philippines, Singapore, Thailand, Vietnam, and Taiwan were included in this study. Ehrlichia canis 16S rRNA positive samples (n = 115 from the previous studies; n = 14 from Austria in this study) were selected for molecular examination by analyses of TRP36 gene. Out of 129 E. canis 16S rRNA positive samples from dogs (n = 88), foxes (n = 7), and R. sanguineus s.l. ticks (n = 34), the TRP36 gene was successfully amplified from 52. The phylogenetic analysis of the TRP36 pre-repeat, tandem repeat, and post repeat regions showed that most samples were genetically close to the United States genogroup, whereas two samples from Austria and one from Pakistan clustered within the Taiwan genogroup. TRP36 sequences from all samples presented a high conserved nucleotide sequence in the tandem repeat region (from 6 to 20 copies), encoding for nine amino acids (i.e., TEDSVSAPA). Our results confirm the US genogroup as the most frequent group in dogs and ticks tested herein, whereas the Taiwan genogroup was present in a lower frequency. Besides, this study described for the first time the US genogroup in red foxes, thus revealing that these canids share identical strains with domestic dogs and R. sanguineus s.l. ticks.