Displaying all 7 publications

Abstract:
Sort:
  1. CHIN, W. L., ANTON, A., KUMAR, S.V., TEOH, P. L.
    MyJurnal
    In Malaysia, harmful algal blooms often occur along the coastal waters of west Sabah, where one of the causative organisms is the toxin-producing dinoflagellate, Pyrodinium bahamense var. compressum. A total of five P. bahamense var. compressum isolates were obtained from four locations and were cultured in f/2 medium. A Polymerase Chain Reaction (PCR) based technique was developed and used to screen for the presence of the dinoflagellate, P. bahamense var. compressum. A dinoflagellate-specific primer pair was designed based on sequences of P. bahamense var. compressum to amplify the 18S small subunit ribosomal DNA (rDNA) sequences. The rDNA of the P. bahamense var. compressum isolates were obtained. A species-specific primer pair was designed to target a 600 bp rDNA sequence of the target dinoflagellate. The primer pair targeting P. bahamense var. compressum did not yield any product with the fifteen algae cultures used as negative controls, but only amplified the rDNA of P. bahamense var. compressum cultures. The PCR method for identification of P. bahamense var. compressum was also applied on twenty field samples collected with plankton net. P. bahamense var. compressum cells were detected by PCR in five field samples and were confirmed by direct sequencing. From this study, a species-specific primer pair was obtained to identify the target species, P. bahamense var. compressum, among the natural complex communities of seawater.
    Matched MeSH terms: Ribosome Subunits, Small
  2. Freeman MA, Yanagida T, Kristmundsson À
    PeerJ, 2020;8:e9529.
    PMID: 32742799 DOI: 10.7717/peerj.9529
    Gastrointestinal myxosporean parasites from the genus Enteromyxum are known to cause severe disease, resulting in high mortalities in numerous species of cultured marine fishes globally. Originally described as Myxidium spp., they were transferred to a new genus, Enteromyxum, to emphasize their novel characteristics. Their retention in the family Myxidiidae at the time was warranted, but more comprehensive phylogenetic analyses have since demonstrated the need for a new family for these parasites. We discovered a novel Enteromyxum in wild fish from Malaysia and herein describe the fourth species in the genus and erect a new family, the Enteromyxidae n. fam., to accommodate them. Enteromyxum caesio n. sp. is described infecting the tissues of the stomach in the redbelly yellowtail fusilier, Caesio cuning, from Malaysia. The new species is distinct from all others in the genus, as the myxospores although morphologically similar, are significantly smaller in size. Furthermore, small subunit ribosomal DNA sequence data reveal that E. caesio is <84% similar to others in the genus, but collectively they form a robust and discrete clade, the Enteromyxidae n. fam., which is placed as a sister taxon to other histozoic marine myxosporeans. In addition, we describe, using transmission electron microscopy, the epicellular stages of Enteromyxum fugu and show a scanning electron micrograph of a mature myxospore of E. caesio detailing the otherwise indistinct sutural line, features of the polar capsules and spore valve ridges. The Enteromyxidae n. fam. is a commercially important group of parasites infecting the gastrointestinal tract of marine fishes and the histozoic species can cause the disease enteromyxosis in intensive finfish aquaculture facilities. Epicellular and sloughed histozoic stages are responsible for fish-to-fish transmission in net pen aquaculture systems but actinospores from an annelid host are thought to be necessary for transmission to fish in the wild.
    Matched MeSH terms: Ribosome Subunits, Small
  3. Borkhanuddin MH, Goswami U, Cech G, Molnár K, Atkinson SD, Székely C
    Food Waterborne Parasitol, 2020 Sep;20:e00092.
    PMID: 32995584 DOI: 10.1016/j.fawpar.2020.e00092
    This study was a co-operative investigation of myxosporean infections of Notopterus notopterus, the bronze featherback, which is a popular food fish in the South Asian region. We examined fish from Lake Kenyir, Malaysia and the River Ganga, Hastinapur, Uttar Pradesh, India, and observed infections with two myxosporeans: Myxidium cf. notopterum (Myxidiidae) and Henneguya ganapatiae (Myxobolidae), respectively. These species were identified by myxospore morphology, morphometry and host tissue affinity, and the original descriptions supplemented with small-subunit ribosomal DNA sequences and phylogenetic analysis. Free myxospores of M. cf. notopterum were found in the gallbladder, and measured 14.7 ± 0.6 μm long and 6.3 ± 0.6 μm wide; host, tissue and myxospore dimensions overlapped with the type, but differed in morphological details (spore shape, valve cell ridges) and locality (Malaysia versus India). Plasmodia and spores of H. ganapatiae were observed in gills, and myxospores had a spore body 9.7 ± 0.4 μm long, 4.5 ± 0.5 μm wide; sample locality, host, tissue, spore morphology and morphometry matched the original description. Small-subunit ribosomal DNA sequences were deposited in GenBank (M. cf. notopterum MT365527, H. ganapatiae MT365528) and both differed by >7% from congeneric species. Although the pathogenicity and clinical manifestation of myxozoan in humans are poorly understood, consumption of raw fish meat with myxozoan infection was reported to be associated with diarrhea. Identification of current parasite fauna from N. notopterus is an essential first step in assessing pathogen risks to stocks of this important food fish.
    Matched MeSH terms: Ribosome Subunits, Small
  4. Freeman MA, Ogawa K
    Int J Parasitol, 2010 Feb;40(2):255-64.
    PMID: 19715695 DOI: 10.1016/j.ijpara.2009.08.006
    Numerous global reports of the species Udonella caligorum, currently thought to be a species complex, suggests that the group may be species-rich. Herein we describe Udonella fugu n. sp., previously described as U. caligorum, found on the parasitic copepod Pseudocaligus fugu infecting Takifugu spp. from Japan. Using morphological data U. fugu can be distinguished from the current valid species by at least one of the traditionally used characters in udonellid taxonomy, and phylogenetic analyses of ssrDNA sequence data for U. fugu and other udonellids confirm that U. fugu forms a distinct clade from other udonellids including U. caligorum. Variable regions in the ssrDNA demonstrated a range of between 2.75 and 5.5% difference between currently recognized species of Udonella. These differences in ssrDNA sequences are phylogenetically useful when distinguishing between morphologically similar udonellids and can be used in conjunction with other data (morphology, phylogeography and fish host) to help clarify udonellid systematics. Udonella fugu was also found to cause significant damage to farmed tiger puffers through their feeding activities. Individual skin lesions were round in shape but merged with adjoining lesions to form more extensive lacerations. In some of the specimens from P. fugu infecting Takifugu niphobles, the protozoan ciliate Trichodina was found on the udonellid body surface and in their intestinal contents. We conclude that the udonellids are a more species-rich group than currently recognized, that early descriptions of new species may have been synonymized with U. caligorum in error and that the frequent global reports of U. caligorum may actually represent new species. This has led to a wide range of morphological descriptions for U. caligorum, blurring the usefulness of morphological data for the group.
    Matched MeSH terms: Ribosome Subunits, Small/genetics*
  5. Borkhanuddin MH, Cech G, Molnár K, Shaharom-Harrison F, Khoa TND, Samshuri MA, et al.
    Parasitol Res, 2020 Jan;119(1):85-96.
    PMID: 31768684 DOI: 10.1007/s00436-019-06541-1
    Examination of 35 barramundi (Lates calcarifer) from aquaculture cages in Setiu Wetland, Malaysia, revealed a single fish infected with three Henneguya spp. (Cnidaria: Myxosporea). Characterization of the infections using tissue tropism, myxospore morphology and morphometry and 18S rDNA sequencing supported description of three new species: Henneguya setiuensis n. sp., Henneguya voronini n. sp. and H. calcarifer n. sp. Myxospores of all three species had typical Henneguya morphology, with two polar capsules in the plane of the suture, an oval spore body, smooth valve cell surfaces, and two caudal appendages. Spores were morphometrically similar, and many dimensions overlapped, but H. voronini n. sp. had shorter caudal appendages compared with H. calcarifer n. sp. and H. setiuensis n. sp. Gross tissue tropism distinguished the muscle parasite H. calcarifer n. sp. from gill parasites H. setiuensis n. sp. and H. voronini n. sp.; and these latter two species were further separable by fine-scale location of developing plasmodia, which were intra-lamellar for H. setiuensis n. sp. and basal to the filaments for H. voronini n. sp. small subunit ribosomal DNA sequences distinguished all three species: the two gill species H. setiuensis n. sp. and H voronini n. sp. were only 88% similar (over 1708 bp), whereas the muscle species H. calcarifer n. sp. was most similar to H. voronini n. sp. (98% over 1696 bp). None of the three novel species was more than 90% similar to any known myxosporean sequence in GenBank. Low infection prevalence of these myxosporeans and lack of obvious tissue pathology from developing plasmodia suggested none of these parasites are currently a problem for barramundi culture in Setiu Wetland; however additional surveys of fish, particularly at different times of the year, would be informative for better risk assessment.
    Matched MeSH terms: Ribosome Subunits, Small/genetics
  6. Wong ML, Ahmed MA, Sulaiman WYW, Manin BO, Leong CS, Quan FS, et al.
    Infect Genet Evol, 2019 09;73:26-32.
    PMID: 30999059 DOI: 10.1016/j.meegid.2019.04.010
    We explored and constructed haplotype network for simian malaria species: Plasmodium knowlesi, P. cynomolgi and P. inui aiming to understand the transmission dynamics between mosquitoes, humans and macaques. Mosquitoes were collected from villages in an area where zoonotic malaria is prevalent. PCR analysis confirmed Anopheles balabacensis as the main vector for macaque parasites, moreover nearly 60% of the mosquitoes harboured more than one Plasmodium species. Fragments of the A-type small subunit ribosomal RNA (SS rRNA) amplified from salivary gland sporozoites, and equivalent sequences obtained from GenBank were used to construct haplotype networks. The patterns were consistent with the presence of geographically distinct populations for P. inui and P. cynomolgi, and with three discrete P. knowlesi populations. This study provides a preliminary snapshot of the structure of these populations, that was insufficient to answer our aim. Thus, collection of parasites from their various hosts and over time, associated with a systematic analysis of a set of genetical loci is strongly advocated in order to obtain a clear picture of the parasite population and the flow between different hosts. This is important to devise measures that will minimise the risk of transmission to humans, because zoonotic malaria impedes malaria elimination.
    Matched MeSH terms: Ribosome Subunits, Small
  7. Mohammad NA, Al-Mekhlafi HM, Anuar TS
    Trop Biomed, 2018 Dec 01;35(4):849-860.
    PMID: 33601835
    Blastocystis is one of the most common parasites inhabiting the intestinal tract of human and animals. Currently, human Blastocystis isolates are classified into nine subtypes (STs) based on the phylogeny of their small subunit ribosomal RNA (SSU rRNA) gene. Although its pathogenicity remains controversial, the possibility of zoonotic transmission was recognized since eight of the nine STs (except for ST9) have been reported in both humans and animals. A cross-sectional study was conducted to determine the prevalence and subtype distribution of Blastocystis isolated from humans and associated animals in an indigenous community with poor hygiene in Malaysia, where the risk of parasitic infection is high. A total of 275 stool samples were collected, subjected to DNA extraction and amplified by PCR assay. The Blastocystis-positive amplicons were then purified and sequenced. Phylogenetic tree of positive isolates, reference strains and outgroup were constructed using maximum likelihood method based on Hasegawa-KishinoYano+G+I model. The prevalence of Blastocystis infection among humans and domestic animals by PCR assay were 18.5% (45/243) and 6.3% (2/32), respectively. Through molecular phylogeny, 47 isolates were separated into five clusters containing isolates from both hosts. Among human isolates, ST3 (53.3%) was the predominant subtype, followed by ST1 (31.1%) and ST2 (15.6%). Chicken and cattle had lower proportions of ST6 (50%) and ST10 (50%), that were barely seen in humans. The distinct distributions of the most important STs among the host animals as well as humans examined demonstrate that there is various host-specific subtypes in the lifecycle of Blastocystis.
    Matched MeSH terms: Ribosome Subunits, Small
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links