Displaying all 3 publications

Abstract:
Sort:
  1. Yong HS, Dhaliwal SS, Lim BL
    Cytologia (Tokyo), 1982 Dec;47(3-4):535-8.
    PMID: 7166052
    Matched MeSH terms: Rodentia/genetics*
  2. Kambol R, Gatseva A, Gifford RJ
    Retrovirology, 2022 Dec 20;19(1):30.
    PMID: 36539757 DOI: 10.1186/s12977-022-00615-2
    Lentiviruses (genus Lentivirus) are complex retroviruses that infect a broad range of mammals, including humans. Unlike many other retrovirus genera, lentiviruses have only rarely been incorporated into the mammalian germline. However, a small number of endogenous retrovirus (ERV) lineages have been identified, and these rare genomic "fossils" can provide crucial insights into the long-term history of lentivirus evolution. Here, we describe a previously unreported endogenous lentivirus lineage in the genome of the South African springhare (Pedetes capensis), demonstrating that the host range of lentiviruses has historically extended to rodents (order Rodentia). Furthermore, through comparative and phylogenetic analysis of lentivirus and ERV genomes, considering the biogeographic and ecological characteristics of host species, we reveal broader insights into the long-term evolutionary history of the genus.
    Matched MeSH terms: Rodentia/genetics
  3. Perison PWD, Amran NS, Adrus M, Anwarali Khan FA
    Vet Med Sci, 2022 Sep;8(5):2059-2066.
    PMID: 35636429 DOI: 10.1002/vms3.849
    BACKGROUND: Rodent species are well known for their potential as hosts and reservoirs for various zoonotic diseases. Studies on blood parasite infection in small mammals focused on urban cities in Peninsular Malaysia and have been conducted over the years. In contrast, there are information gaps related to molecular detection of blood parasites in urban areas of Sarawak that are associated with veterinary importance and zoonotic spillover potential. Increasing prevalence and transmission of blood parasite diseases is the most crucial public health issue, particularly in developing urban areas of Sarawak. Therefore, molecular identification studies were performed to determine and identify the blood parasites infecting rodents.

    METHODS: A total of 40 rodent blood samples were analysed for blood parasite infection and a combined approach using polymerase chain reaction-based technique, and traditional microscopic examination (blood smear test) was conducted. 18s rRNA (Plasmodium spp.) and cytochrome b (Hepatocystis spp.) gene marker were used to identify the blood parasites.

    RESULTS: Note that 67.5% (n = 27) blood samples were tested negative for blood parasites, while 32.5% (n = 13) blood samples collected were infected with at least one protozoan parasite. Out of 13 samples, 69.2% (n = 9) were detected with Hepatocystis sp., while 15.4% (n = 2) were positive with Hepatozoon ophisauri. Two individuals had multiple infections from both species. No Plasmodium spp. have been detected throughout this study using universal primer (targeted Plasmodium spp.); however, different parasite species which were H. ophisauri were detected.

    CONCLUSION: Although there is no evidence of human infection from H. ophisauri and Hepatocystis sp. detected from the study, the data show the host species are heavily infected, and the information is essential for future prevention of zoonotic outbreaks and surveillance programmes. Therefore, it is suggested that the surveillance programmes should be incorporated in targeted areas with a high risk of disease emergence.

    Matched MeSH terms: Rodentia/genetics
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links