Displaying all 2 publications

Abstract:
Sort:
  1. Hempolchom C, Yasanga T, Wijit A, Taai K, Dedkhad W, Srisuka W, et al.
    Parasitol Res, 2017 Jan;116(1):143-153.
    PMID: 27752768
    Antennal sensilla were first investigated in the eight medically and veterinary important Anopheles mosquito species (Anopheles argyropus, Anopheles crawfordi, Anopheles nigerrimus, Anopheles nitidus, Anopheles paraliae (= Anopheles lesteri), Anopheles peditaeniatus, Anopheles pursati, and Anopheles sinensis) of the Hyrcanus Group in Thailand, using scanning electron microscopy (SEM). Four types of sensilla, including sensilla chaetica (large and small), sensilla trichodea (sharp- and blunt-tipped), sensilla basiconica or grooved pegs (types I, II, and III), and sensilla coeloconica (large and small), were observed on the female antennae of the eight species. The greatest number of sensilla found along the flagellum of all the Anopheles species consisted of sensilla trichodea. Grooved pegs type II were not found on the antennae of An. peditaeniatus. Interestingly, clusters of 10-15 grooved pegs type III, with blunt-tipped and unevenly grooved-lengthwise sensilla, and a sunken group of 7-12 grooved pegs type III, with slightly curved and point-tipped sensilla, were found distally on flagellomeres 3-7 of An. argyropus and An. peditaeniatus, respectively. In addition, the key for species identification, based on fine structure and morphometrics of antennal sensilla among the eight species, was constructed and differentiated successfully. However, in order to focus intensively on the exact function of these sensilla, further electrophysiological study is needed in understanding their significant role in mosquito behavior, especially when these insects seek hosts for transmitting pathogens to humans.
    Matched MeSH terms: Sensilla/ultrastructure*
  2. Taai K, Harbach RE, Somboon P, Sriwichai P, Aupalee K, Srisuka W, et al.
    Trop Biomed, 2019 Dec 01;36(4):926-937.
    PMID: 33597464
    Some species of the Anopheles dirus species complex are considered to be highly competent malaria vectors in Southeast Asia. Anopheles dirus is the primary vector of Plasmodium falciparum and P. vivax while An. cracens is the main vector of P. knowlesi. However, these two species are difficult to distinguish and identify based on morphological characters. Hence, the aim of this study was to investigate the potential use of antennal sensilla to distinguish them. Large sensilla coeloconica borne on the antennae of adult females were counted under a compound light microscope and the different types of antennal sensilla were examined in a scanning electron microscope. The antennae of both species bear five types of sensilla: ampullacea, basiconica, chaetica, coeloconica and trichodea. Observations revealed that the mean numbers of large sensilla coeloconica on antennal flagellomeres 2, 3, 7, 10 and 12 on both antennae of both species were significantly different. This study is the first to describe the types of antennal sensilla and to discover the usefulness of the large coeloconic sensilla for distinguishing the two species. The discovery provides a simple, reliable and inexpensive method for distinguishing them.
    Matched MeSH terms: Sensilla/ultrastructure
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links