Displaying all 2 publications

Abstract:
Sort:
  1. Lawson JM, Foster SJ, Lim AC, Chong VC, Vincent AC
    J Fish Biol, 2015 Jan;86(1):1-15.
    PMID: 25307290 DOI: 10.1111/jfb.12527
    Life-history variables for three incidentally captured species of seahorse (Kellogg's seahorse Hippocampus kelloggi, the hedgehog seahorse Hippocampus spinosissimus and the three-spot seahorse Hippocampus trimaculatus) were established using specimens obtained from 33 fisheries landing sites in Peninsular Malaysia. When samples were pooled by species across the peninsula, sex ratios were not significantly different from unity, and height and mass relationships were significant for all species. For two of these species, height at physical maturity (HM ) was smaller than the height at which reproductive activity (HR ) commenced: H. spinosissimus (HM = 99·6 mm, HR = 123·2 mm) and H. trimaculatus (HM = 90·5 mm, HR = 121·8 mm). For H. kelloggi, HM could not be estimated as all individuals were physically mature, while HR = 167·4 mm. It appears that all three Hippocampus spp. were, on average, caught before reproducing; height at 50% capture (HC ) was ≥HM but ≤HR . The results from this study probe the effectiveness of assessment techniques for data-poor fisheries that rely heavily on estimates of length at maturity, especially if maturity is poorly defined. Findings also question the sustainability of H. trimaculatus catches in the south-west region of Peninsular Malaysia, where landed specimens had a notably smaller mean height (86·2 mm) and markedly skewed sex ratio (6% males) compared with samples from the south-east and north-west of the peninsula.
    Matched MeSH terms: Smegmamorpha/physiology*
  2. Lim AC, Chong VC, Chew WX, Muniandy SV, Wong CS, Ong ZC
    J Acoust Soc Am, 2015 Jul;138(1):404-12.
    PMID: 26233039 DOI: 10.1121/1.4923153
    Acoustic signals of the tiger-tail seahorse (Hippocampus comes) during feeding were studied using wavelet transform analysis. The seahorse "click" appears to be a compounded sound, comprising three acoustic components that likely come from two sound producing mechanisms. The click sound begins with a low-frequency precursor signal, followed by a sudden high-frequency spike that decays quickly, and a final, low-frequency sinusoidal component. The first two components can, respectively, be traced to the sliding movement and forceful knock between the supraorbital bone and coronet bone of the cranium, while the third one (purr) although appearing to be initiated here is produced elsewhere. The seahorse also produces a growling sound when under duress. Growling is accompanied by the highest recorded vibration at the cheek indicating another sound producing mechanism here. The purr has the same low frequency as the growl; both are likely produced by the same structural mechanism. However, growl and purr are triggered and produced under different conditions, suggesting that such "vocalization" may have significance in communication between seahorses.
    Matched MeSH terms: Smegmamorpha/physiology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links