Displaying all 4 publications

Abstract:
Sort:
  1. Mahre MB, Wahid H, Rosnina Y, Jesse FF, Azlan CA, Khumran AM, et al.
    Anim. Reprod. Sci., 2014 Aug;148(3-4):245-50.
    PMID: 25015846 DOI: 10.1016/j.anireprosci.2014.06.006
    This study provides standard information on the attributes of sperm and describes the surface structure of normal and abnormal spermatozoa of Rusa timorensis. Two fertile stags were used as the source of semen collected during the first breeding season commencing from April 5 to July 2, 2012. Another five stags were used as the source of semen collected during the second breeding season commencing from April 1 to June 27, 2013. Semen samples were collected from the stags using an electro-ejaculator. The ejaculate was processed and samples prepared for light and scanning electron microscopy (SEM) according to standard methods. No significant difference (P>0.05) was found between sperm attributes in comparison between different stags and different months of the fertile seasons. The results of this study have also demonstrated that there are no differences in size, shape and surface structure between spermatozoa of the different stags and different months of the fertile seasons. Sperm attributes (volume, pH, sperm concentration, general motility, progressive motility and viability) were 2.2±0.29 ml, 7.2±0.17, 886.3±39.7×10(6) spermatozoa/ml, 78.7±2.01%, 80.8±1.85% and 83.2±0.85%, respectively. Morphological analysis showed low percentage of abnormal spermatozoa 13.9±2.88%. Scanning electron microscopy revealed spermatozoa which consisted of a flat paddle-shaped head, short neck and a tail, which was subdivided into midpiece, principal piece and endpiece. The average spermatozoon was 66.2±0.69 μm in total length. The flat paddle-shaped head was 7.8±0.28 μm long, 4.2±0.15 μm at its widest width, 2.4±0.18 μm basal width and 0.7±0.0 2μm thick. As for the tail, the midpiece length was 13.2±0.14 μm, 0.6±0.04 μm in diameter; the principal piece was 42.6±0.04μm, and 2.8±0.06 μm for the endpiece. Abnormal spermatozoa such as tapered head, microcephalic head, decapitated spermatozoa and bent tails were observed. Results provide standard information useful for development of strategies for semen cryopreservation and assisted reproductive technology in this species.
    Matched MeSH terms: Spermatozoa/ultrastructure*
  2. Canning EU, Sinden RE, Landau I, Miltgen F
    Ann Parasitol Hum Comp, 1976 11 1;51(6):607-23.
    PMID: 829210
    An immature merocyst of Hepatocystis malayensis and gametocytes of H. brayi were studied with the electron microscope. The merocyst consisted of a highly complex cytoplasmic reticulum ramifying through an amorphous matrix: the entire complex was enclosed by a simple unit membrane. The host cell was apparently destroyed completely during growth of the cyst. Immature gametocytes were highly amoeboid and showed extensive vacuolisation or attenuation of the cytoplasm. The nucleus contained one or two prominent nucleoli. Mature gametocytes had compact cytoplasm and contained pyriform osmiophilic bodies which were believed to function in the release of the parasites from the host cells. Macrogametocytes were distinguished from microgametocytes by cytoplasmic differences in numbers of ribosomes, and cristate mitochondria and in the extent of development of the smooth endoplasmic reticulum. The compact nuclei of the macrogametocytes had inconspicuous DNA but prominent nucleoli whereas those of the microgametocytes were irregular and showed a central aggregate of DNA. In microgametogenesis karyokinesis of the parent nucleus was delayed until axoneme formation was complete. Then the nuclear buds were extruded into emerging microgametes. At fertilisation the plasmalemmas of the two gametes fused and the single axoneme and nucleus of the microgamete moved into the cytoplasm of the macrogamete.
    Matched MeSH terms: Spermatozoa/ultrastructure
  3. Dallai R, Gottardo M, Mercati D, Machida R, Mashimo Y, Matsumura Y, et al.
    Arthropod Struct Dev, 2014 Jul;43(4):371-83.
    PMID: 24657729 DOI: 10.1016/j.asd.2014.03.001
    The male and female reproductive apparatus of Zorotypus magnicaudelli (Malaysia), Zorotypus huxleyi (Ecuador) and Zorotypus weidneri (Brazil) were examined and documented in detail. The genital apparatus and sperm of the three species show only minor differences. The testes are larger in Z. magnicaudelli. Z. huxleyi lacks the helical appendage in the accessory glands. A long cuticular flagellum is present in Z. magnicaudelli and in the previously studied Zorotypus caudelli like in several other species, whereas it is absent in Z. weidneri, Z. huxleyi, Zorotypus hubbardi, Zorotypus impolitus and Zorotypus guineensis. Characteristic features of the very similar sperm are the presence of: a) two dense arches above the axoneme; b) a 9 + 9+2 axoneme with detached subtubules A and B of doublets 1 and 6; c) the axonemal end degenerating with enlarging accessory tubules; d) accessory tubules with 17 protofilaments; e) three accessory bodies beneath the axoneme; and f) two mitochondrial derivatives of equal shape. The first characteristic (a) is unknown outside of Zoraptera and possibly autapomorphic. The sperm structure differs distinctly in Z. impolitus and Z. hubbardi, which produce giant sperm and possess a huge spermatheca. The presence of the same sperm type in species either provided with a sclerotized coiled flagellum in males or lacking this structure indicates that a different organization of the genital apparatus does not necessarily affect the sperm structure. The flagellum and its pouch has probably evolved within Zoraptera, but it cannot be excluded that it is a groundplan feature and was reduced several times. The fossil evidence and our findings suggest that distinct modifications in the genital apparatus occurred before the fragmentation of the Gondwanan landmass in the middle Cretaceous.
    Matched MeSH terms: Spermatozoa/ultrastructure
  4. Kaka A, Wahid H, Rosnina Y, Yimer N, Khumran AM, Behan AA, et al.
    Reprod. Domest. Anim., 2015 Feb;50(1):29-33.
    PMID: 25366298 DOI: 10.1111/rda.12445
    The study was conducted to evaluate the effects of α-linolenic acid (ALA) on frozen-thawed quality and fatty acid composition of bull sperm. For that, twenty-four ejaculates obtained from three bulls were diluted in a Tris extender containing 0 (control), 3, 5, 10 and 15 ng/ml of ALA. Extended semen was incubated at 37°C for 15 min, to allow absorption of ALA by sperm cell membrane. The sample was chilled for 2 h, packed into 0.25-ml straws and frozen in liquid nitrogen for 24 h. Subsequently, straws were thawed and evaluated for total sperm motility (computer-assisted semen analysis), membrane functional integrity (hypo-osmotic swelling test), viability (eosin-nigrosin), fatty acid composition (gas chromatography) and lipid peroxidation (thiobarbituric acid-reactive substances (TBARS)). A higher (p < 0.05) percentage of total sperm motility was observed in ALA groups 5 ng/ml (47.74 ± 07) and 10 ng/ml (44.90 ± 0.7) in comparison with control (34.53 ± 3.0), 3 ng/ml (34.40 ± 2.6) and 15 ng/ml (34.60 ± 2.9). Still, the 5 ng/ml ALA group presented a higher (p < 0.05) percentage of viable sperms (74.13 ± 0.8) and sperms with intact membrane (74.46 ± 09) than all other experimental groups. ALA concentration and lipid peroxidation in post-thawed sperm was higher in all treated groups when compared to the control group. As such, the addition of 5 ng/ml of ALA to Tris extender improved quality of frozen-thawed bull spermatozoa.
    Matched MeSH terms: Spermatozoa/ultrastructure
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links