Displaying all 4 publications

Abstract:
Sort:
  1. Laith AA, Abdullah MA, Nurhafizah WWI, Hussein HA, Aya J, Effendy AWM, et al.
    Fish Shellfish Immunol, 2019 Jul;90:235-243.
    PMID: 31009810 DOI: 10.1016/j.fsi.2019.04.052
    Streptococcus agalactiae species have been recognized as the main pathogen causing high mortality in fish leading to significant worldwide economical losses to the aquaculture industries. Vaccine development has become a priority in combating multidrug resistance in bacteria; however, there is a lack of commercial live attenuated vaccine (LAV) against S. agalactiae in Malaysia. The aim of this study is to compare two methods using attenuated bacteria as live vaccine and to evaluate the efficacy of selected LAV on the immune responses and resistance of Oreochromis niloticus (tilapia) against S. agalactiae. The LAV derived from S. agalactiae had been weakened using the chemical agent Acriflavine dye (LAV1), whereas the second vaccine was weakened using serial passages of bacteria on broth media (LAV2). Initial immunization was carried out only on day one, given twice-in the morning and evening, for the 42 day period. Serum samples were collected to determine the systemic antibody (IgM) responses and lysozymal (LSZ) activity using ELISA. On day 43 after immunization, the fish were injected intraperitoneally (i.p) with 0.1 mL of S. agalactiae at LD50 = 1.5 × 105 (CFU)/fish. Fish were monitored daily for 10 days. Clinical signs, mortality and the relative percent of survival (RPS) were recorded. Trial 1 results showed a significant increased (P 
    Matched MeSH terms: Streptococcus agalactiae/immunology*
  2. Ismail MS, Syafiq MR, Siti-Zahrah A, Fahmi S, Shahidan H, Hanan Y, et al.
    Fish Shellfish Immunol, 2017 Jan;60:21-24.
    PMID: 27864157 DOI: 10.1016/j.fsi.2016.11.040
    A tilapia farm experiencing endemic streptococcosis was selected to study the effect of vaccination with a feed-based vaccine on naturally ocurring streptococcosis. A total of 9000 red tilapia, Oreochromis niloticus × Oreochromis mossambicus of 100 ± 20 g were divided into 9 cages. Fish of Group 1 in cages 1, 2 and 3 were not vaccinated. Group 2 in cages 4, 5 and 6 were vaccinated on days 0 and 14 (single booster) while Group 3 in cages 7, 8 and 9 were vaccinated on days 0, 14 and 42 (double booster). Vaccination was done by oral administration of the feed-based bacterin vaccine at 4% bodyweight. Samples of serum for antibody study and the brain, eyes and kidney for bacterial isolation were collected at 14-day intervals. The study was carried out during the critical months between April and June. Following vaccination and booster, there was significant (p 
    Matched MeSH terms: Streptococcus agalactiae/immunology*
  3. Nur-Nazifah M, Sabri MY, Siti-Zahrah A
    Fish Shellfish Immunol, 2014 Mar;37(1):193-200.
    PMID: 24486904 DOI: 10.1016/j.fsi.2014.01.011
    This study was carried out to determine the antibody responses and protective capacity of an inactivated recombinant vaccine expressing the cell wall surface anchor family protein of Streptococcus agalactiae following oral vaccination against streptococcosis in tilapia. Tilapia were vaccinated orally with 10(6) CFU/mL of the recombinant vaccine incorporated in feed (feed-based recombinant vaccine) (vaccinated group or Group 1), 10(6) CFU/mL of pET-32 Ek/LIC vector without cell wall surface anchor family protein (control group or Group 2), 10(6) CFU/mL of formalin-killed cells of S. agalactiae vaccine incorporated in feed was also prepared (feed-based vaccine) (vaccinated group or Group 3), and unvaccinated control group or Group 4 (fed with commercial pellets). During the course of study, serum, mucus and gut lavage fluid were collected to evaluate the antibody levels via enzyme-linked immunosorbent assay (ELISA). The results showed that tilapia immunized with the feed-based recombinant vaccine developed a strong and significantly (P 
    Matched MeSH terms: Streptococcus agalactiae/immunology*
  4. Ching JJ, Shuib AS, Abdullah N, Majid NA, Taufek NM, Sutra J, et al.
    Fish Shellfish Immunol, 2021 Sep;116:61-73.
    PMID: 34157396 DOI: 10.1016/j.fsi.2021.06.005
    In aquaculture, commercial fish such as red hybrid tilapia are usually raised at high density to boost the production within a short period of time. This overcrowded environment, however, may cause stress to the cultured fish and increase susceptibility to infectious diseases. Antibiotics and chemotherapeutics are used by fish farmers to overcome these challenges, but this may increase the production cost. Studies have reported on the potential of mushroom polysaccharides that can act as immunostimulants to enhance the immune response and disease resistance in fish. In the current study, hot water extract (HWE) from mushroom stalk waste (MSW) was used to formulate fish feed and hence administered to red hybrid tilapia to observe the activation of immune system. Upon 30 days of feeding, the fish were challenged with pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharides (LPS) and polyinosinic:polycytidylic acid (poly (I:C)) to mimic bacterial and viral infection, respectively. HWE supplementation promoted better feed utilisation in red hybrid tilapia although it did not increase the body weight gain and specific growth rate compared to the control diet. The innate immunological parameters such as phagocytic activity and respiratory burst activity were significantly higher in HWE-supplemented group than that of the control group following PAMPs challenges. HWE-supplemented diet also resulted in higher mRNA transcription of il1b and tnfa in midgut, spleen and head kidney at 1-day post PAMPs injection. Tlr3 exhibited the highest upregulation in the HWE fed fish injected with poly (I:C). At 3-days post PAMPs injection, both ighm and tcrb expression were upregulated significantly in the spleen and head kidney. Results showed that HWE supplementation enhances the immune responses of red hybrid tilapia and induced a higher serum bactericidal activity against S. agalactiae.
    Matched MeSH terms: Streptococcus agalactiae/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links