The FK506-binding protein of Plasmodium knowlesi (Pk-FKBP35) is considerably a viable antimalarial drug target, which belongs to the peptidyl-prolyl cis-trans isomerase (PPIase) protein family member. Structurally, this protein consists of an N-terminal FK506-binding domain (FKBD) and a C-terminal tetratricopeptide repeat domain (TPRD). This study aims to decipher functional properties of these domains as a platform for development of novel antimalarial drugs. Accordingly, full-length Pk-FKBP35 as well as its isolated domains, Pk-FKBD and Pk-TPRD were overexpressed, purified, and characterized. The results showed that catalytic PPIase activity was confined to the full-length Pk-FKBP35 and Pk-FKBD, suggesting that the catalytic activity is structurally regulated by the FKBD. Meanwhile, oligomerization analysis revealed that Pk-TPRD is essential for dimerization. Asp55, Arg60, Trp77 and Phe117 in the Pk-FKBD were considerably important for catalysis as underlined by significant reduction of PPIase activity upon mutations at these residues. Further, inhibition activity of Pk-FKBP35 towards calcineurin phosphatase activity revealed that the presence of FKBD is essential for the inhibitory property, while TPRD may be important for efficient binding to calcineurin. We then discussed possible roles of FKBP35 in Plasmodium cells and proposed mechanisms by which the immunosuppressive drug, FK506, interacts with the protein.
No biologically based diagnostic criteria are in clinical use today for obsessive-compulsive disorder (OCD), schizophrenia, and major depressive disorder (MDD), which are defined with reference to Diagnostic and Statistical Manual clinical symptoms alone. However, these disorders cannot always be well distinguished on clinical grounds and may also be comorbid. A biological blood-based dynamic genomic signature that can differentiate among OCD, MDD, and schizophrenia would therefore be of great utility. This study enrolled 77 patients with OCD, 67 controls with no psychiatric illness, 39 patients with MDD, and 40 with schizophrenia. An OCD-specific gene signature was identified using blood gene expression analysis to construct a predictive model of OCD that can differentiate this disorder from healthy controls, MDD, and schizophrenia using a logistic regression algorithm. To verify that the genes selected were not derived as a result of chance, the algorithm was tested twice. First, the algorithm was used to predict the cohort with true disease/control status and second, the algorithm predicted the cohort with disease/control status randomly reassigned (null set). A six-gene panel (COPS7A, FKBP1A, FIBP, TP73-AS1, SDF4, and GOLGA8A) discriminated patients with OCD from healthy controls, MDD, and schizophrenia in the training set (with an area under the receiver-operating-characteristic curve of 0.938; accuracy, 86%; sensitivity, 88%; and specificity, 85%). Our findings indicate that a blood transcriptomic signature can distinguish OCD from healthy controls, MDD, and schizophrenia. This finding further confirms the feasibility of using dynamic blood-based genomic signatures in psychiatric disorders and may provide a useful tool for clinical staff engaged in OCD diagnosis and decision making.