OBJECTIVE: The aim of this study was to assess the effectiveness and tolerability of scalp cooling among breast cancer patients in our study population.
METHODS: Consecutive breast cancer patients receiving FE75C, FE100C, FE100C-D, docetaxel75 or docetaxel, and cyclophosphamide (TC) at our treatment center were recruited and allocated to the treatment (scalp cooling, DigniCapTM system) or control group in this prospective nonrandomized controlled study. The assessment of alopecia was carried out using the World Health Organization grading system and clinical photographs.
RESULTS: Seventy patients were recruited, but only 25 completed the study and were evaluable for analysis. Five of 12 patients (42%) in the scalp cooling group managed to preserve hair. Two of three patients who received FE75C and TC regimens had minimal hair loss. All patients treated with FE100C had severe hair loss. Half of all patients who received scalp cooling throughout chemotherapy rated the treatment as reasonably well tolerated. The most common reason for discontinuing scalp cooling was intolerance to its side effects.
CONCLUSION: Scalp cooling is potentially effective in reducing CIA caused by docetaxel, TC, and FE75C chemotherapy regimen. However, it was not well tolerated by our study population. The dropout rate was high, and this needs to be taken into consideration when pursuing further trials in a similar setting.
METHODS: The designed nano- anticancer formulation was characterized thorough X-ray diffraction (XRD), Fourier transformed infrared (FTIR), transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM) and Brunauer-Emmett-Teller (BET) methods. The nano- anticancer formulation (DTX- CaCO3NP) was evaluated for drug delivery properties thorough in vitro release study in human body simulated solution at pH 7.4 and intracellular lysosomal pH 4.8.
RESULTS: Characterization revealed the successful synthesis of DTX- CaCO3NP, which had a sustained release at pH 7.4. TEM showed uniformly distributed pleomorphic shaped pure aragonite particles. The highest entrapment efficiency (96%) and loading content (11.5%) were obtained at docetaxel to nanoparticles ratio of 1:4. The XRD patterns revealed strong crystallizations in all the nanoparticles formulation, while FTIR showed chemical interactions between the drug and nanoparticles with negligible positional shift in the peaks before and after DTX loading. BET analysis showed similar isotherms before and after DTX loading. The designed DTX- CaCO3NP had lower (p 0.05) effects at 48 h and 72 h. However, the DTX- CaCO3NP released less than 80% of bond DTX at 48 and 72 h but showed comparable effects with free DTX.
CONCLUSIONS: The results showed that the developed DTX- CaCO3NP released DTX slower at pH 7.4 and had comparable cytotoxicity with free DTX at 48 and 72 h in MCF-7 cells.