Displaying all 2 publications

Abstract:
Sort:
  1. Ashhar Z, Ahmad Fadzil MF, Hassan H, Othman MF, Md Hassan MB, Chun Vui VY, et al.
    Curr Med Imaging, 2024;20:e15734056270935.
    PMID: 38874043 DOI: 10.2174/0115734056270935231113035620
    Skeletal-related events due to bone metastases can be prevented by early diagnosis using radiological or nuclear imaging techniques. Nuclear medicine techniques such as Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have been used for diagnostic imaging of bone for decades. Although it is widely recognized that conventional diagnostic imaging techniques such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) have high sensitivity, low cost and wide availability, the specificity of both techniques is rather low compared to nuclear medicine techniques. Nuclear medicine techniques, on the other hand, have improved specificity when introduced as a hybrid imaging modality, as they can combine physiological and anatomical information. Two main radiopharmaceuticals are used in nuclear medicine: [99mTc]-methyl diphosphonate ([99mTc]Tc-MDP) from the generator and [18F]sodium fluoride ([18F]NaF) from the cyclotron. The former is used in SPECT imaging, while the latter is used in PET imaging. However, recent studies show that the role of radiolabeled bisphosphonates with gallium-68 (68Ga) and fluorine-18 (18F) may have a potential role in the future. This review, therefore, presents and discusses the brief method for producing current and future potential radiopharmaceuticals for bone metastases.
    Matched MeSH terms: Technetium Tc 99m Medronate
  2. Rohani MFM, Yonan SNM, Tagiling N, Zainon WMNW, Udin Y, Nawi NM
    Asian Spine J, 2020 Oct;14(5):629-638.
    PMID: 32213791 DOI: 10.31616/asj.2019.0308
    STUDY DESIGN: Retrospective study.

    PURPOSE: This study aims to semiquantitatively evaluate the standardized uptake value (SUV) of 99mTc-methylene diphosphonate (MDP) radionuclide tracer in the normal vertebrae of breast cancer patients using an integrated single-photon emission computed tomography (SPECT)/computed tomography (CT) scanner.

    OVERVIEW OF LITERATURE: Molecular imaging techniques using gamma cameras and stand-alone SPECT have traditionally been utilized to evaluate metastatic bone diseases. However, these methods lack quantitative analysis capabilities, impeding accurate uptake characterization.

    METHODS: A total of 30 randomly selected female breast cancer patients were enrolled in this study. The SUV mean (SUVmean) and SUV maximum (SUVmax) values for 286 normal vertebrae at the thoracic and lumbar levels were calculated based on the patients' body weight (BW), body surface area (BSA), and lean body mass (LBM). Additionally, 106 degenerative joint disease (DJD) lesions of the spine were also characterized, and both their BW SUVmean and SUVmax values were obtained. A receiver operating characteristic (ROC) curve analysis was then performed to determine the cutoff value of SUV for differentiating DJD from normal vertebrae.

    RESULTS: The mean±standard deviations for the SUVmean and SUVmax in the normal vertebrae displayed a relatively wide variability: 3.92±0.27 and 6.51±0.72 for BW, 1.05±0.07 and 1.75±0.17 for BSA, and 2.70±0.19 and 4.50±0.44 for LBM, respectively. Generally, the SUVmean had a lower coefficient of variation than the SUVmax. For DJD, the mean±standard deviation for the BW SUVmean and SUVmax was 5.26±3.24 and 7.50±4.34, respectively. Based on the ROC curve, no optimal cutoff value was found to differentiate DJD from normal vertebrae.

    CONCLUSIONS: In this study, the SUV of 99mTc-MDP was successfully determined using SPECT/CT. This research provides an approach that could potentially aid in the clinical quantification of radionuclide uptake in normal vertebrae for the management of breast cancer patients.

    Matched MeSH terms: Technetium Tc 99m Medronate
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links