Displaying all 3 publications

Abstract:
Sort:
  1. Imran FH, Yong CK, Das S, Huei YL
    Anat Cell Biol, 2016 Dec;49(4):273-280.
    PMID: 28127502 DOI: 10.5115/acb.2016.49.4.273
    Superficial temporal artery (STA) based pedicled fascial flap plays a pivotal role in ear reconstruction for microtia patients. There is paucity of literature on the anatomy of the STA in microtia patients. The present study aimed to describe any possible anatomical variations seen in the STA of patients afflicted with microtia. Pre-operative carotid computer tomographic angiography images of patients under the microtia database of Plastic and Reconstructive Surgery Unit at a tertiary medical centre were selected and 3-dimensionally reconstructed. Measurements were made on the 3D reconstructed computed tomographic angiography images of the STA on both the sides of the microtic ear and the non-microtic ear to assess its various anatomical parameters. We managed to obtain a total of 39 computed tomographic angiography images of STAs for analysis. There was a significant difference in the number of main branches of STA between the two groups (P=0.006). The proportion of ears with 2 main branches was higher in the non-microtia group (89.5%) compared to the microtia group (45.0%). A significant difference was found in the STA diameter between the two groups (P=0.012). The mean diameter of STA in the non-microtia group was larger by 0.4 mm. Furthermore, the median angle of STA was larger on the side of the non-microtic ears compared to that of microtic ears by 24.5°, with a P-value of 0.011. The results of the study may be of clinical importance while planning and performing ear reconstructive surgeries using STA based pedicled fascial flaps.
    Matched MeSH terms: Temporal Arteries
  2. van Sleen Y, Jiemy WF, Pringle S, van der Geest KSM, Abdulahad WH, Sandovici M, et al.
    Arthritis Rheumatol, 2021 12;73(12):2327-2337.
    PMID: 34105308 DOI: 10.1002/art.41887
    OBJECTIVE: Macrophages mediate inflammation, angiogenesis, and tissue destruction in giant cell arteritis (GCA). Serum levels of the macrophage-associated protein YKL-40 (chitinase 3-like protein 1), previously linked to angiogenesis and tissue remodeling, remain elevated in GCA despite glucocorticoid treatment. This study was undertaken to investigate the contribution of YKL-40 to vasculopathy in GCA.

    METHODS: Immunohistochemistry was performed on GCA temporal artery biopsy specimens (n = 12) and aortas (n = 10) for detection of YKL-40, its receptor interleukin-13 receptor α2 (IL-13Rα2), macrophage markers PU.1 and CD206, and the tissue-destructive protein matrix metalloproteinase 9 (MMP-9). Ten noninflamed temporal artery biopsy specimens served as controls. In vitro experiments with granulocyte-macrophage colony-stimulating factor (GM-CSF)- or macrophage colony-stimulating factor (M-CSF)-skewed monocyte-derived macrophages were conducted to study the dynamics of YKL-40 production. Next, small interfering RNA-mediated knockdown of YKL-40 in GM-CSF-skewed macrophages was performed to study its effect on MMP-9 production. Finally, the angiogenic potential of YKL-40 was investigated by tube formation experiments using human microvascular endothelial cells (HMVECs).

    RESULTS: YKL-40 was abundantly expressed by a CD206+MMP-9+ macrophage subset in inflamed temporal arteries and aortas. GM-CSF-skewed macrophages from GCA patients, but not healthy controls, released significantly higher levels of YKL-40 compared to M-CSF-skewed macrophages (P = 0.039). In inflamed temporal arteries, IL-13Rα2 was expressed by macrophages and endothelial cells. Functionally, knockdown of YKL-40 led to a 10-50% reduction in MMP-9 production by macrophages, whereas exposure of HMVECS to YKL-40 led to significantly increased tube formation.

    CONCLUSION: In GCA, a GM-CSF-skewed, CD206+MMP-9+ macrophage subset expresses high levels of YKL-40 which may stimulate tissue destruction and angiogenesis through IL-13Rα2 signaling. Targeting YKL-40 or GM-CSF may inhibit macrophages that are currently insufficiently suppressed by glucocorticoids.

    Matched MeSH terms: Temporal Arteries/metabolism; Temporal Arteries/pathology*
  3. Ali F, Halim AS, Najihah SZ, Ibrahim M, Abdullah J
    J Craniomaxillofac Surg, 2005 Oct;33(5):326-30.
    PMID: 16125400
    A vascularized outer-table calvarial bone graft was used for repairing a Posnick type 2 traumatic orbito-frontal bone defect supported by the use of a calcium-based putty (Allomatrix) in a 7-year-old girl. Gaps between the donor and recipient sites were filled with Allomatrix containing demineralized bone matrix particles. Four years later there was a good cosmetic result using an artificial left eye.
    Matched MeSH terms: Temporal Arteries/transplantation
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links