Displaying all 7 publications

Abstract:
Sort:
  1. Sharifah N, Heo CC, Ehlers J, Houssaini J, Tappe D
    Acta Trop, 2020 Sep;209:105527.
    PMID: 32447029 DOI: 10.1016/j.actatropica.2020.105527
    Ticks are blood-feeding ectoparasites and major vectors of pathogens that cause infectious diseases in humans and animals worldwide including mammals, birds and reptiles. Despite the growing scientific effort in the 20th century, there is still limited information on ticks and tick-borne pathogens in Southeast Asia, especially concerning medical, veterinary, socioeconomic and agricultural aspects in the island nations. This review provides an overview of the current state of knowledge of ticks and their pathogens in the island nations of Southeast Asia and peninsular Malaysia. We aim to stimulate further research studies on ticks and tick-borne pathogens of human and veterinary importance in this geographical region.
    Matched MeSH terms: Tick-Borne Diseases/microbiology*
  2. Kazim AR, Low VL, Houssaini J, Tappe D, Heo CC
    Vet Parasitol Reg Stud Reports, 2024 Nov;56:101145.
    PMID: 39550195 DOI: 10.1016/j.vprsr.2024.101145
    To shed light on the importance of tick-borne diseases, especially in farm animals that often contact with farm workers, this study aimed to identify ticks and tick-borne pathogens in ruminants in Malaysia. Accordingly, specimen collection was conducted across Peninsular Malaysia yielded a total of 1241 ticks collected from 674 farm ruminants. Among these, four tick species were identified, with Rhipicephalus microplus being the most prevalent, constituting 99.03 % of the total tick population. Analysis of 130 tick pools revealed three positives for Borrelia. BLAST analyses of the flaB and 16S rRNA genes revealed high similarities to Borrelia theileri, ranging from 98.78 to 100 % for flaB and 99.23-99.45 % for 16S rRNA. These results align with the phylogenetic trees, where sequences from both genes clustered together with B. theileri, further supporting this identification. No Rickettsia and Bartonella bacteria were detected. This study represents the first occurrence of B. theileri in R. microplus in Malaysia.
    Matched MeSH terms: Tick-Borne Diseases/microbiology
  3. Choi YJ, Kim JY, Kang TU, Park HJ, Kim HC, Lee IY, et al.
    Trop Biomed, 2024 Jun 01;41(2):176-182.
    PMID: 39154270 DOI: 10.47665/tb.41.2.007
    The prevalence of tick-borne pathogens (TBP), Orientia tsutsugamushi, Rickettsia and Borrelia spp. in wild small animals, namely wild rodents, is now widely investigated. This study is to present the prevalence and distribution of O. tsutsugamushi, Rickettsia and Borrelia spp. in wild small animals and ticks collected from Gyeonggi and Gangwon provinces, Republic of Korea (ROK) in 2014. A total of 131 wild small animals, rodents and shrews, and 2,954 ticks were collected from Gyeonggi and Gangwon provinces from May to November 2014. The wild small animals (KR1-9) and ticks (K1-17) were grouped in accordance with capture dates and locations. Among the wild small animals, a total of 393 tissues and blood samples were extracted from six selected small animal series (KR1-3, KR6-8). Also, each date and location-grouped ticks were identified for its species and pooled according to the stage of development. Molecular identification for Rickettsia, Orientia, and Borrelia species was performed using polymerase chain reaction (PCR). To detect TBPs among wild small animals and ticks, primer sets targeting the 56 kDa protein encoding gene of Orientia spp., outer membrane protein B gene (OmpB) of Rickettsia spp., and 5S-23S intergenic spacer region (IGS) gene of Borrelia spp. were used. Of the 393 wild small animals' blood and tissue samples, 199 (50.6%) were positive for Orientia spp., 158 (40.2%) were positive for Borrelia spp., and 55 (14.0%) were positive for Rickettsia spp. Moreover, a total of 14 tick pools (n = 377) was positive for Rickettsia spp. (n=128, 34.0%) and Borrelia spp. (n=33, 8.8%). High prevalence of Orientia spp. and Rickettsia spp. in rodents and shrews were observed. This study presents significant insights by presenting data collected in 2014 that the prevalence of TBP was already high in mid 2010s. This study highlights the sustainable routine surveillance model for TBP.
    Matched MeSH terms: Tick-Borne Diseases/microbiology
  4. Kho KL, Koh FX, Singh HK, Zan HA, Kukreja A, Ponnampalavanar S, et al.
    Am J Trop Med Hyg, 2016 10 05;95(4):765-768.
    PMID: 27402519
    Limited information is available on the etiological agents of rickettsioses in southeast Asia. Herein, we report the molecular investigation of rickettsioses in four patients attending a teaching hospital in Malaysia. DNA of Rickettsia sp. RF2125, Rickettsia typhi, and a rickettsia closely related to Rickettsia raoultii was detected in the blood samples of the patients. Spotted fever group rickettsioses and murine typhus should be considered in the diagnosis of patients with nonspecific febrile illness in this region.
    Matched MeSH terms: Tick-Borne Diseases/microbiology
  5. Bell-Sakyi L, Darby A, Baylis M, Makepeace BL
    Ticks Tick Borne Dis, 2018 07;9(5):1364-1371.
    PMID: 29886187 DOI: 10.1016/j.ttbdis.2018.05.015
    Tick cell lines are increasingly used in many fields of tick and tick-borne disease research. The Tick Cell Biobank was established in 2009 to facilitate the development and uptake of these unique and valuable resources. As well as serving as a repository for existing and new ixodid and argasid tick cell lines, the Tick Cell Biobank supplies cell lines and training in their maintenance to scientists worldwide and generates novel cultures from tick species not already represented in the collection. Now part of the Institute of Infection and Global Health at the University of Liverpool, the Tick Cell Biobank has embarked on a new phase of activity particularly targeted at research on problems caused by ticks, other arthropods and the diseases they transmit in less-developed, lower- and middle-income countries. We are carrying out genotypic and phenotypic characterisation of selected cell lines derived from tropical tick species. We continue to expand the culture collection, currently comprising 63 cell lines derived from 18 ixodid and argasid tick species and one each from the sand fly Lutzomyia longipalpis and the biting midge Culicoides sonorensis, and are actively engaging with collaborators to obtain starting material for primary cell cultures from other midge species, mites, tsetse flies and bees. Outposts of the Tick Cell Biobank will be set up in Malaysia, Kenya and Brazil to facilitate uptake and exploitation of cell lines and associated training by scientists in these and neighbouring countries. Thus the Tick Cell Biobank will continue to underpin many areas of global research into biology and control of ticks, other arthropods and vector-borne viral, bacterial and protozoan pathogens.
    Matched MeSH terms: Tick-Borne Diseases/microbiology
  6. Koh FX, Kho KL, Kisomi MG, Wong LP, Bulgiba A, Tan PE, et al.
    J Med Entomol, 2018 02 28;55(2):269-276.
    PMID: 29202206 DOI: 10.1093/jme/tjx204
    Little information is available on human anaplasmosis and ehrlichiosis in Southeast Asia despite increasing reports of the detection of Anaplasma spp. and Ehrlichia spp. in the ticks. We report herein the serological findings against the tick-borne pathogens in a group of animal farm workers (n = 87) and indigenous people (n = 102) in Peninsular Malaysia. IgG antibodies against Ehrlichia chaffeensis were detected from 29.9% and 34.3% of farm workers and indigenous people, respectively, using commercial indirect immunofluorescence assays. Comparatively, only 6.9% of the indigenous people but none of the animal farm workers were seropositive to Anaplasma phagocytophilum. A polymerase chain reaction (PCR) assay targeting the 16S rRNA gene of Anaplasmataceae was used to identify Anaplastamataceae in ticks collected from various locations adjacent to the areas where the serological survey was conducted. In this study, a total of 61.5% of ticks infesting farm animals, 37.5% of ticks infesting peri-domestic animals in rural villages, 27.3% of ticks collected from wildlife animals, and 29.1% of questing ticks collected from forest vegetation were positive for Anaplasmataceae DNA. Sequence analyses of 16S rRNA gene region (238 bp) provide the identification for Anaplasma marginale, Anaplasma bovis, Anaplasma platys, A. phagocytophilum, and Anaplasma spp. closely related to Candidatus Cryptoplasma californiense in ticks. E. chaffeensis DNA was not detected from any ticks, instead, Ehrlichia sp. strain EBm52, Ehrlichia mineirensis and Candidatus Ehrlichia shimanensis are the only Ehrlichia sp. identified from cattle ticks in this study. Further investigation is required to ascertain the occurrence of zoonotic transmission of Ehrlichia and Anaplasma infections in Peninsular Malaysia.
    Matched MeSH terms: Tick-Borne Diseases/microbiology
  7. Koh FX, Nurhidayah MN, Tan PE, Kho KL, Tay ST
    Vet Parasitol Reg Stud Reports, 2019 08;17:100315.
    PMID: 31303231 DOI: 10.1016/j.vprsr.2019.100315
    Limited information is available on tropical ticks and tick-borne bacteria affecting the health of humans and animals in the Southeast Asia region. Francisella tularensis is a tick-borne bacterium which causes a potentially life-threatening disease known as tularemia. This study was conducted to determine the occurrence of Francisella spp. in questing ticks collected from Malaysian forest reserve areas. A total of 106 ticks (mainly Dermacentor and Haemaphysalis spp.) were examined for Francisella DNA using a Polymerase chain reaction (PCR) assay targeting the bacterial 16S rDNA. Francisella DNA was detected from 12 Dermacentor ticks. Sequence analysis of the amplified 16S rDNA sequences (1035 bp) show >99% identity with that of Francisella endosymbiont reported in a tick from Thailand. A dendrogram constructed based on the bacterial 16S rDNA shows that the Francisella spp. were distantly related to the pathogenic strains of F. tularensis. Three Francisella-positive ticks were identified as Dermacentor atrosignatus, based on sequence analysis of the tick mitochondrial 16S rRNA gene. Further screening of cattle and sheep ticks (Haemaphysalis bispinosa and Rhipicephalus microplus) and animal samples (cattle, sheep, and goats) did not yield any positive findings. Our findings provide the first molecular data on the occurrence of a Francisella strain with unknown pathogenicity in Dermacentor questing ticks in Malaysia.
    Matched MeSH terms: Tick-Borne Diseases/microbiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links