METHODS: A dataset containing medical records of 809 patients suspected to suffer from ACS was used. For each subject, 266 clinical factors were collected. At first, a feature selection was performed based on interviews with 20 cardiologists; thereby 40 seminal features for classifying ACS were selected. Next, a feature selection algorithm was also applied to detect a subset of the features with the best classification accuracy. As a result, the feature numbers considerably reduced to only seven. Lastly, based on the seven selected features, eight various common pattern recognition tools for classification of ACS were used.
RESULTS: The performance of the aforementioned classifiers was compared based on their accuracy computed from their confusion matrices. Among these methods, the multi-layer perceptron showed the best performance with the 83.2% accuracy.
CONCLUSION: The results reveal that an integrated AI-based feature selection and classification approach is an effective method for the early and accurate classification of ACS and ultimately a timely diagnosis and treatment of this disease.