OBJECTIVE: This study was done to evaluate the cellular fixation, morphology, quality of smear in gynae cytology, and diagnostic interpretation of cervical cytological smears produced by the PathTezt liquid-based processor.
MATERIALS AND METHODS: A total of 400 pap smear samples were taken and processed using the PathTezt 2000 processor. The slides were evaluated in terms of sample adequacy, percentage of the circle covered by epithelial cells, cellular distribution, obscuring factors, and cell fixation.
RESULTS: About 95.25% (381) of the samples were satisfactory for the evaluation. In 19 (4.75%) of the samples, epithelial cells covered less than 50% of the circle. A sample with good cellular distribution was seen in 92% of the cases, while 354 (88.5%) samples showed minimal inflammatory background. Almost all the smears (95.75%) had no erythrocytes in the background. All smears showed good quality fixation features toward nuclear, cytoplasm, and microorganisms. The total performance rate was 99%.
CONCLUSION: Although the PathTezt liquid-based processor is still new compared to other first-generation LBP, the smears produced by this method were of high quality and it was cost-effective.
MATERIALS AND METHODS: This cross-sectional study was conducted on 258 community dwelling women from urban and rural settings who participated in health campaigns. In order to reduce the sampling bias, half of the study population performed the self-sampling prior to the physician sampling while the other half performed the self-sampling after the physician sampling, randomly. Acquired samples were assessed for cytological changes as well as HPV DNA detection.
RESULTS: The mean age of the subjects was 40.4±11.3 years. The prevalence of abnormal cervical changes was 2.7%. High risk and low risk HPV genotypes were found in 4.0% and 2.7% of the subjects, respectively. A substantial agreement was observed between self-sampling and the physician obtained sampling in cytological diagnosis (k=0.62, 95%CI=0.50, 0.74), micro-organism detection (k=0.77, 95%CI=0.66, 0.88) and detection of hormonal status (k=0.75, 95%CI=0.65, 0.85) as well as detection of high risk (k=0.77, 95%CI=0.4, 0.98) and low risk (K=0.77, 95%CI=0.50, 0.92) HPV. Menopausal state was found to be related with 8.39 times more adequate cell specimens for cytology but 0.13 times less adequate cell specimens for virological assessment.
CONCLUSIONS: This study revealed that self-sampling has a good agreement with physician sampling in detecting HPV genotypes. Self-sampling can serve as a tool in HPV screening while it may be useful in detecting cytological abnormalities in Malaysia.
MATERIALS AND METHODS: Women underwent self-sampling followed by gynecologist sampling during screening at two primary health clinics. Pap cytology of cervical specimens was evaluated for specimen adequacy, presence of endocervical cells or transformation zone cells and cytological interpretation for cells abnormalities. Cervical specimens were also extracted and tested for HPV DNA detection. Positive HPV smears underwent gene sequencing and HPV genotyping by referring to the online NCBI gene bank. Results were compared between samplings by Kappa agreement and McNemar test.
RESULTS: For Pap specimen adequacy, KSSD showed 100% agreement with gynecologist sampling but had only 32.3% agreement for presence of endocervical cells. Both sampling showed 100% agreement with only 1 case detected HSIL favouring CIN2 for cytology result. HPV DNA detection showed 86.2%agreement (K=0.64, 95% CI 0.524-0.756, p=0.001) between samplings. KSSD and gynaecologist sampling identified high risk HPV in 17.3% and 23.9% respectively (p= 0.014).
CONCLUSION: The self-sampling using Kato device can serve as a tool in Pap cytology and HPV DNA detection in low resource settings in Malaysia. Self-sampling devices such as KSSD can be used as an alternative technique to gynaecologist sampling for cervical cancer screening among rural populations in Malaysia.