Displaying all 14 publications

Abstract:
Sort:
  1. Teo WFA, Devaraj K, Nor MNM, Li WJ, Tan GYA
    Curr Microbiol, 2024 Mar 29;81(5):124.
    PMID: 38551738 DOI: 10.1007/s00284-024-03634-8
    In this study, we employed a polyphasic approach to determine the taxonomic position of a newly isolated actinomycete, designated SE31T, obtained from a sediment sample collected at Cape Rochado, Malaysia. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain SE31T belonged to the family Pseudonocardiaceae and exhibited the highest sequence similarity (98.9%) to Sciscionella marina. Further genomic analysis demonstrated a 93.4% average nucleotide identity and 54.4% digital DNA-DNA hybridization relatedness between strain SE31T and S. marina. The chemotaxonomic characteristics of strain SE31T were typical of the genus Sciscionella, including cell-wall chemotype IV (with meso-diaminopimelic acid as the diagnostic diamino acid, and arabinose and galactose as whole-cell sugars). The identified polar lipids of strain SE31T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine, and hydroxyphosphatidymethylethanolamine. The primary menaquinone observed was MK-9(H4), and the major cellular fatty acid was iso-C16:0. The genomic DNA size of strain SE31T was determined to be 7.4 Mbp with a G+C content of 68.7%. Based on these comprehensive findings, strain SE31T represents a novel species within the genus Sciscionella, in which the name Sciscionella sediminilitoris sp. nov. is proposed. The type strain of Sciscionella sediminilitoris is SE31T (= DSM 46824T = TBRC 5134T).
    Matched MeSH terms: Vitamin K 2/chemistry
  2. Kwong WK, Moran NA
    Int J Syst Evol Microbiol, 2016 Mar;66(3):1323-1329.
    PMID: 26743158 DOI: 10.1099/ijsem.0.000882
    Honey bees and bumble bees harbour a small, defined set of gut bacterial associates. Strains matching sequences from 16S rRNA gene surveys of bee gut microbiotas were isolated from two honey bee species from East Asia. These isolates were mesophlic, non-pigmented, catalase-positive and oxidase-negative. The major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH, C16 : 0 and C16 : 0 3-OH. The DNA G+C content was 29-31 mol%. They had ∼87 % 16S rRNA gene sequence identity to the closest relatives described. Phylogenetic reconstruction using 20 protein-coding genes showed that these bee-derived strains formed a highly supported monophyletic clade, sister to the clade containing species of the genera Chryseobacterium and Elizabethkingia within the family Flavobacteriaceae of the phylum Bacteroidetes. On the basis of phenotypic and genotypic characteristics, we propose placing these strains in a novel genus and species: Apibacter adventoris gen. nov., sp. nov. The type strain of Apibacter adventoris is wkB301T ( = NRRL B-65307T = NCIMB 14986T).
    Matched MeSH terms: Vitamin K 2/chemistry
  3. Thevarajoo S, Selvaratnam C, Goh KM, Hong KW, Chan XY, Chan KG, et al.
    Int J Syst Evol Microbiol, 2016 Sep;66(9):3662-3668.
    PMID: 27334651 DOI: 10.1099/ijsem.0.001248
    A Gram-staining-negative, aerobic, yellow-orange-pigmented, rod-shaped bacterium designated D-24T was isolated from seawater from sandy shoreline in Johor, Malaysia. The 16S rRNA gene sequence analysis revealed that strain D-24T is affiliated with the genus Vitellibacter. It shared more than 96 % sequence similarity with the types of some of the validly published species of the genus: Vitellibactervladivostokensis KMM 3516T (99.5 %), Vitellibactersoesokkakensis RSSK-12T (97.3 %), VitellibacterechinoideorumCC-CZW007T (96.9 %), VitellibacternionensisVBW088T (96.7 %) and Vitellibacteraestuarii JCM 15496T (96.3 %). DNA-DNA hybridization and genome-based analysis of average nucleotide identity (ANI) of strain D-24T versus V.vladivostokensisKMM 3516T exhibited values of 35.9±0.14 % and 89.26 %, respectively. Strain D-24T showed an even lower ANI value of 80.88 % with V. soesokkakensis RSSK-12T. The major menaquinone of strain D-24T was MK-6, and the predominant fatty acids were iso-C15 : 0 and iso-C17 : 0 3-OH. Strain D-24T contained major amounts of phosphatidylethanolamine, two lipids and two aminolipids, and a phosphoglycolipid that was different to that of other species of the genus Vitellibacter. The genomic DNA G+C content was 40.6 mol%. On the basis of phenotypic properties, DNA-DNA relatedness, ANI value and chemotaxonomic analyses, strain D-24T represents a novel species of the genus Vitellibacter, for which the name Vitellibacter aquimaris sp. nov. is proposed. The type strain is D-24T (=KCTC 42708T=DSM 101732T).
    Matched MeSH terms: Vitamin K 2/chemistry
  4. Venil CK, Nordin N, Zakaria ZA, Ahmad WA
    Int J Syst Evol Microbiol, 2014 Sep;64(Pt 9):3153-9.
    PMID: 24958763 DOI: 10.1099/ijs.0.063594-0
    A bacterial strain, designated UTM-3(T), isolated from the rhizosphere soil of Artocarpus integer (cempedak) in Malaysia was studied to determine its taxonomic position. Cells were Gram-stain-negative, non-spore-forming rods, devoid of flagella and gliding motility, that formed yellow-pigmented colonies on nutrient agar and contained MK-6 as the predominant menaquinone. Comparative analysis of the 16S rRNA gene sequence of strain UTM-3(T) with those of the most closely related species showed that the strain constituted a distinct phyletic line within the genus Chryseobacterium with the highest sequence similarities to Chryseobacterium lactis NCTC 11390(T), Chryseobacterium viscerum 687B-08(T), Chryseobacterium tructae 1084-08(T), Chryseobacterium arthrosphaerae CC-VM-7(T), Chryseobacterium oncorhynchi 701B-08(T), Chryseobacterium vietnamense GIMN1.005(T), Chryseobacterium bernardetii NCTC 13530(T), Chryseobacterium nakagawai NCTC 13529(T), Chryseobacterium gallinarum LMG 27808(T), Chryseobacterium culicis R4-1A(T), Chryseobacterium flavum CW-E2(T), Chryseobacterium aquifrigidense CW9(T), Chryseobacterium ureilyticum CCUG 52546(T), Chryseobacterium indologenes NBRC 14944(T), Chryseobacterium gleum CCUG 14555(T), Chryseobacterium jejuense JS17-8(T), Chryseobacterium oranimense H8(T) and Chryseobacterium joostei LMG 18212(T). The major whole-cell fatty acids were iso-C15 : 0 and iso-C17 : 1ω9c, followed by summed feature 4 (iso-C15 : 0 2-OH and/or C16 : 1ω7t) and iso-C17 : 0 3-OH, and the polar lipid profile consisted of phosphatidylethanolamine and several unknown lipids. The DNA G+C content strain UTM-3(T) was 34.8 mol%. On the basis of the phenotypic and phylogenetic evidence, it is concluded that the isolate represents a novel species of the genus Chryseobacterium, for which the name Chryseobacterium artocarpi sp. nov. is proposed. The type strain is UTM-3(T) ( = CECT 8497(T) = KCTC 32509(T)).
    Matched MeSH terms: Vitamin K 2/chemistry
  5. Lee LH, Azman AS, Zainal N, Eng SK, Mutalib NA, Yin WF, et al.
    Int J Syst Evol Microbiol, 2014 Oct;64(Pt 10):3513-3519.
    PMID: 25056298 DOI: 10.1099/ijs.0.062414-0
    Strain MUSC 115(T) was isolated from mangrove soil of the Tanjung Lumpur river in the state of Pahang, Peninsular Malaysia. Cells of this strain stained Gram-positive and were non-spore-forming, short rods that formed yellowish-white colonies on different agar media. The taxonomy of strain MUSC 115(T) was studied by a polyphasic approach, and the organism showed a range of phylogenetic and chemotaxonomic properties consistent with those of the genus Microbacterium. The cell-wall peptidoglycan was of type B2β, containing the amino acids ornithine, alanine, glycine, glutamic acid and homoserine. The muramic acid was of the N-glycolyl form. The predominant menaquinones detected were MK-12, MK-13 and MK-11. The polar lipids consisted of phosphatidylglycerol, phosphoglycolipid, diphosphatidylglycerol, two unidentified lipids, three unidentified phospholipids and four unidentified glycolipids. The major fatty acids of the cell membrane were anteiso-C15:0 and anteiso-C17:0. The whole-cell sugars detected were ribose, glucose, mannose and galactose. Based on the 16S rRNA gene sequence, strain MUSC 115(T) showed the highest sequence similarity to Microbacterium immunditiarum SK 18(T) (98.1%), M. ulmi XIL02(T) (97.8%) and M. arborescens DSM 20754(T) (97.5%) and lower sequence similarity to strains of other species of the genus Microbacterium. DNA-DNA hybridization experiments revealed a low level of DNA-DNA relatedness (less than 24%) between strain MUSC 115(T) and the type strains of closely related species. Furthermore, BOX-PCR fingerprint comparison also indicated that strain MUSC 115(T) represented a unique DNA profile. The DNA G+C content determined was 70.9 ± 0.7 mol%, which is lower than that of M. immunditiarum SK 18(T). Based on the combination of genotypic and phenotypic data, it is proposed that strain MUSC 115(T) represents a novel species of the genus Microbacterium, for which the name Microbacterium mangrovi sp. nov. is proposed. The type strain is MUSC 115(T) ( = MCCC 1K00251(T) = DSM 28240(T) = NBRC 110089(T)).
    Matched MeSH terms: Vitamin K 2/chemistry
  6. Juboi H, Basik AA, Shamsul SSG, Arnold P, Schmitt EK, Sanglier JJ, et al.
    Int J Syst Evol Microbiol, 2015 Nov;65(11):4113-4120.
    PMID: 26303235 DOI: 10.1099/ijsem.0.000548
    The taxonomic position of an actinobacterium strain, C296001T, isolated from a soil sample collected in Sarawak, Malaysia, was established using a polyphasic approach. Phylogenetically, strain C296001T was closely associated with the genus Luteipulveratus and formed a distinct monophyletic clade with the only described species, Luteipulveratus mongoliensis NBRC 105296T. The 16S rRNA gene sequence similarity between strain C296001T and L. mongoliensis was 98.7 %. DNA-DNA hybridization results showed that the relatedness of strain C296001T to L. mongoliensis was only 21.5 %. The DNA G+C content of strain C296001T was 71.7 mol%. Using a PacBio RS II system, whole genome sequences for strains C296001T and NBRC 105296T were obtained. The genome sizes of 4.5 Mbp and 5.4 Mbp determined were similar to those of other members of the family Dermacoccaceae. The cell-wall peptidoglycan contained lysine, alanine, aspartic acid, glutamic acid and serine, representing the peptidoglycan type A4α l-Lys-l-Ser-d-Asp. The major menaquinones were MK-8(H4), MK-8 and MK-8(H2). Phosphatidylglycerol, phosphatidylinositol, diphosphatidylglycerol and phosphoglycolipid were the polar lipids, while the whole-cell sugars were glucose, fucose and lesser amounts of ribose and galactose. The major fatty acids were iso-C16 : 0, anteiso-C17 : 0, iso-C16 : 1 H, anteiso-C17 : 1ω9c, iso-C18 : 0 and 10-methyl C17 : 0. Chemotaxonomic analyses showed that C296001T had typical characteristics of members of the genus Luteipulveratus, with the main differences occurring in phenotypic characteristics. On the basis of the phenotypic and chemotaxonomic evidence, it is proposed that strain C296001T be classified as a representative of a novel species in the genus Luteipulveratus, for which the name Luteipulveratus halotolerans sp. nov. is recommended. The type strain is C296001T ( = ATCC TSD-4T = JCM 30660T).
    Matched MeSH terms: Vitamin K 2/chemistry
  7. Yaakop AS, Chan KG, Ee R, Kahar UM, Kon WC, Goh KM
    Int J Syst Evol Microbiol, 2015 Jul;65(7):2215-2221.
    PMID: 25862385 DOI: 10.1099/ijs.0.000242
    A Gram-stain-positive, endospore-forming, rod-shaped bacterial strain, designated D5(T), was isolated from seawater collected from a sandy beach in a southern state of Malaysia and subjected to a polyphasic taxonomic study. Sequence analysis of the 16S rRNA gene demonstrated that this isolate belongs to the genus Jeotgalibacillus, with 99.87% similarity to Jeotgalibacillus alimentarius JCM 10872(T). DNA-DNA hybridization of strain D5(T) with J. alimentarius JCM 10872(T) demonstrated 26.3% relatedness. The peptidoglycan type was A1α linked directly to L-lysine as the diamino acid. The predominant quinones identified in strain D5(T) were menaquinones MK-7 and MK-8.The major fatty acids were iso-C15:0 and anteiso-C15:0. The G+C content of its DNA was 43.0 mol%. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and sulfoquinovosyl diacylglycerol, as well as two unknown phospholipids and three unknown lipids. The phenotypic, chemotaxonomic and genotypic data indicated that strain D5(T) represents a novel species of the genus Jeotgalibacillus, for which the name Jeotgalibacillus malaysiensis sp. nov. is proposed (type strain D5(T) = DSM 28777(T) = KCTC33550(T)). An emended description of the genus Jeotgalibacillus is also provided.
    Matched MeSH terms: Vitamin K 2/chemistry
  8. Goh CBS, Wong LW, Parimannan S, Rajandas H, Loke S, Croft L, et al.
    Int J Syst Evol Microbiol, 2020 Dec;70(12):6355-6363.
    PMID: 33146596 DOI: 10.1099/ijsem.0.004539
    A Gram-negative, filamentous aerobic bacterium designated as strain Mgbs1T was isolated on 12 April 2017 from the subsurface soil and leaf litter substrate at the base of a Koompassia malaccensis tree in a tropical peat swamp forest in the northern regions of the state of Selangor, Malaysia (3° 39' 04.7' N 101° 17' 43.7'' E). Phylogenetic analyses based on the full 16S rRNA sequence revealed that strain Mgbs1T belongs to the genus Chitinophaga with the greatest sequence similarity to Chitinophaga terrae KP01T (97.65 %), Chitinophaga jiangningensis DSM27406T (97.58 %), and Chitinophaga dinghuensis DHOC24T (97.17 %). The major fatty acids of strain Mgbs1T (>10 %) are iso-C15 : 0, C16 : 1 ω5c and iso-C17 : 0 3-OH while the predominant respiratory quinone is menaquinone-7. Strain Mgbs1T has a complete genome size of 8.03 Mb, with a G+C content of 48.5 mol%. The DNA-DNA hybridization (DDH) score between strain Mgbs1T and C. jiangningensis DSM27406T was 15.9 %, while in silico DDH values of strain Mgbs1T against C. dinghuensis DHOC24T and C. terrae KP01T were 20.0 and 19.10% respectively. Concurrently, Average Nucleotide Identity (ANI) scores between strain Mgbs1T against all three reference strains are 73.2 %. Based on the phenotypic, chemotaxonomic, and phylogenetic consensus, strain Mgbs1T represents a novel species of the genus Chitinophaga, for which the name Chitinophaga extrema sp. nov. is proposed (=DSM 108835T=JCM 33276T).
    Matched MeSH terms: Vitamin K 2/chemistry
  9. Selvaratnam C, Thevarajoo S, Goh KM, Chan KG, Chong CS
    Int J Syst Evol Microbiol, 2016 Dec;66(12):5537-5543.
    PMID: 28077207 DOI: 10.1099/ijsem.0.001553
    The genus Roseivirga currently includes five species: Roseivirga ehrenbergii, R. echinicomitans, R. spongicola, R. marina and R. maritima. Marinicola seohaensis SW-152T was renamed as Roseivirgaseohaensis SW-152T and then reclassified again as a later heterotypic synonym of R. ehrenbergii KMM 6017T. In this study, based on average nucleotide identity and digital DNA-DNA hybridization values obtained from in silico methods, together with fatty acid analyses and biochemical tests, we propose to reclassify R. ehrenbergii SW-152 as Roseivirga seohaensis comb. nov. (type strain SW-152T=KCTC 1231T=JCM 12600T). In this work, a Gram-negative, rod-shaped, aerobic and pink-pigmented strain designated as D-25T was isolated from seawater (Desaru Beach, Johor, Malaysia). The 16S rRNA gene analysis revealed that strain D-25T was related to the genus Roseivirga. Strain D-25T was found most closely related to R. seohaensis SW-152T based on average nucleotide identity and digital DNA-DNA hybridization values, phenotypic and chemotaxonomic analyses, indicating that these strains belong to the same species. Thus, it is proposed to split the species R.oseivirga seohaensis into two novel subspecies, Roseivirga seohaensissubsp. seohaensis subsp. nov. (type strain SW-152T=KCTC 12312T=JCM 12600T) and Roseivirga seohaensissubsp. aquiponti subsp. nov. (type strain D-25T=KCTC 42709T=DSM 101709T) and to emend the description of the genus Roseivirga.
    Matched MeSH terms: Vitamin K 2/chemistry
  10. Lam MQ, Vodovnik M, Zorec M, Chen SJ, Goh KM, Yahya A, et al.
    Int J Syst Evol Microbiol, 2020 Mar;70(3):1769-1776.
    PMID: 31976852 DOI: 10.1099/ijsem.0.003970
    To date, there is sparse information for the genus Robertkochia with Robertkochia marina CC-AMO-30DT as the only described member. We report here a new species isolated from mangrove soil collected at Malaysia Tanjung Piai National Park and perform polyphasic characterization to determine its taxonomic position. Strain CL23T is a Gram-negative, yellow-pigmented, strictly aerobic, catalase-positive and oxidase-positive bacterium. The optimal growth conditions were determined to be at pH 7.0, 30-37 °C and in 1-2 % (w/v) NaCl. The major respiratory quinone was menaquinone-6 (MK-6) and the highly abundant polar lipids were four unidentified lipids, a phosphatidylethanolamine and two unidentified aminolipids. The 16S rRNA gene similarity between strain CL23T and R. marina CC-AMO-30DT is 96.67 %. Strain CL23T and R. marina CC-AMO-30DT clustered together and were distinguished from taxa of closely related genera in 16S rRNA gene phylogenetic analysis. Genome sequencing revealed that strain CL23T has a genome size of 4.4 Mbp and a G+C content of 40.72 mol%. Overall genome related indexes including digital DNA-DNA hybridization value and average nucleotide identity are 17.70 % and approximately 70%, below the cutoffs of 70 and 95%, respectively, indicated that strain CL23T is a distinct species from R. marina CC-AMO-30DT. Collectively, based on the phenotypic, chemotaxonomic, phylogenetic and genomic evidences presented here, strain CL23T is proposed to represent a new species with the name Robertkochia solimangrovi sp. nov. (KCTC 72252T=LMG 31418T). An emended description of the genus Robertkochia is also proposed.
    Matched MeSH terms: Vitamin K 2/chemistry
  11. Tanaka R, Cleenwerck I, Mizutani Y, Iehata S, Bossier P, Vandamme P
    Int J Syst Evol Microbiol, 2017 Aug;67(8):3050-3056.
    PMID: 28820118 DOI: 10.1099/ijsem.0.002080
    A Gram-negative, aerobic, polar-flagellated and rod-shaped, sometimes slightly curved bacterium, designated MA5T, was isolated from the gut of an abalone of the species Haliotis gigantea collected in Japan. Phylogenetic analyses based on 16S rRNA, gyrB, hsp60 and rpoB gene sequences placed strain MA5T in the genus Arcobacter in an independent phylogenetic line. Comparison of the 16S rRNA gene sequence of this strain with those of the type strains of the established Arcobacter species revealed A. nitrofigilis (95.1 %) as nearest neighbour. Strain MA5T grew optimally at 25 °C, pH 6.0 to 9.0 and in the presence of 2 to 5 % (w/v) NaCl under both aerobic and microaerobic conditions. The predominant fatty acids found were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c), C12 : 0 3-OH and C18 : 1 ω7c. Menaquinone-6 (MK-6) and menaquinone-7 (MK-7) were found as the major respiratory quinones. The major polar lipids detected were phosphatidylethanolamine and phosphatidylglycerol. Strain MA5T could be differentiated phenotypically from the phylogenetic closest Arcobacter species by its ability to grow on 0.05 % safranin and 0.01 % 2,3,5-triphenyl tetrazolium chloride (TTC), but not on 0.5 % NaCl. The obtained DNA G+C content of strain MA5T was 27.9 mol%. Based on the phylogenetic, chemotaxonomic and phenotypic distinctiveness of MA5T, this strain is considered to represent a novel species of the genus Arcobacter, for which the name Arcobacter haliotis sp. nov. is proposed. The type strain is MA5T (=LMG 28652T=JCM 31147T).
    Matched MeSH terms: Vitamin K 2/chemistry
  12. See-Too WS, Ee R, Madhaiyan M, Kwon SW, Tan JY, Lim YL, et al.
    Int J Syst Evol Microbiol, 2017 Apr;67(4):944-950.
    PMID: 27959786 DOI: 10.1099/ijsem.0.001721
    A taxonomic study was performed on a novel Gram-stain-positive, coccus-shaped, orange-pigmented motile bacterium, designated as strain L10.15T. The organism was isolated from a soil sample collected in Lagoon Island (close to Adelaide Island, western Antarctic Peninsula) using a quorum-quenching enrichment medium. Growth occurred at 4-30 °C, pH 6-11 and at moderately high salinity (0-15 %, w/v, NaCl), with optimal growth at 26 °C, at pH 7-8 and with 6 % (w/v) NaCl. 16S rRNA gene sequence analysis showed that strain L10.15T belonged to the genus Planococcus and was closely related to Planococcus halocryophilus Or1T (99.3 % similarity), Planococcus donghaensis JH1T (99.0 %), Planococcus antarcticus DSM 14505T (98.3 %), Planococcus plakortidis AS/ASP6 (II)T (97.6 %), Planococcus maritimus TF-9T (97.5 %), Planococcus salinarum ISL-6T (97.5 %) and Planococcus kocurii NCIMB 629T (97.5 %). However, the average nucleotide identity-MUMmer analysis showed low genomic relatedness values of 71.1-81.7 % to the type strains of these closely related species of the genus Planococcus. The principal fatty acids were anteiso-C15 : 0, C16 : 1ω7c and anteiso-C17 :  0, and the major menaquinones of strain L10.15T were MK-5 (48 %), MK-6 (6 %) and MK-7 (44 %). Polar lipid analysis revealed the presence of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and aminophospholipid. The DNA G+C content was 39.4 mol%. The phenotypic and genotypic data indicate that strain L10.15T represents a novel species of the genus Planococcus, for which the name Planococcus versutus sp. nov. is proposed. The type strain is L10.15T (=DSM 101994T=KACC 18918T).
    Matched MeSH terms: Vitamin K 2/chemistry
  13. Tanaka R, Cleenwerck I, Mizutani Y, Iehata S, Shibata T, Miyake H, et al.
    Int J Syst Evol Microbiol, 2015 Dec;65(12):4388-4393.
    PMID: 26354496 DOI: 10.1099/ijsem.0.000586
    Four brown-alga-degrading, Gram-stain-negative, aerobic, non-flagellated, gliding and rod-shaped bacteria, designated LMG 28520T, LMG 28521, LMG 28522 and LMG 28523, were isolated from the gut of the abalone Haliotis gigantea obtained in Japan. The four isolates had identical random amplified polymorphic DNA patterns and grew optimally at 25 °C, at pH 6.0-9.0 and in the presence of 1.0-4.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences placed the isolates in the genus Formosa with Formosa algae and Formosa arctica as closest neighbours. LMG 28520T and LMG 28522 showed 100 % DNA-DNA relatedness to each other, 16-17 % towards F. algae LMG 28216T and 17-20 % towards F. arctica LMG 28318T; they could be differentiated phenotypically from these established species. The predominant fatty acids of isolates LMG 28520T and LMG 28522 were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C15 : 1 G and iso-C15 : 0. Isolate LMG 28520T contained menaquinone-6 (MK-6) as the major respiratory quinone and phosphatidylethanolamine, two unknown aminolipids and an unknown lipid as the major polar lipids. The DNA G+C content was 34.4 mol% for LMG 28520T and 35.5 mol% for LMG 28522. On the basis of their phylogenetic and genetic distinctiveness, and differential phenotypic properties, the four isolates are considered to represent a novel species of the genus Formosa, for which the name Formosa haliotis sp. nov. is proposed. The type strain is LMG 28520T ( = NBRC 111189T).
    Matched MeSH terms: Vitamin K 2/chemistry
  14. Lee LH, Zainal N, Azman AS, Eng SK, Ab Mutalib NS, Yin WF, et al.
    Int J Syst Evol Microbiol, 2014 Sep;64(Pt 9):3297-306.
    PMID: 24994773 DOI: 10.1099/ijs.0.065045-0
    Two novel actinobacteria, strains MUSC 135(T) and MUSC 137, were isolated from mangrove soil at Tanjung Lumpur, Malaysia. The 16S rRNA gene sequence similarity and DNA-DNA relatedness between strains MUSC 135(T) and MUSC 137 were 100 % and 83±3.2 %, confirming that these two strains should be classified in the same species. Strain MUSC 135(T) exhibited a broad-spectrum bacteriocin against the pathogens meticillin-resistant Staphylococcus aureus (MRSA) strain ATCC BAA-44, Salmonella typhi ATCC 19430(T) and Aeromonas hydrophila ATCC 7966(T). A polyphasic approach was used to study the taxonomy of MUSC 135(T), and it showed a range of phylogenetic and chemotaxonomic properties consistent with those of the genus Streptomyces. The diamino acid of the cell-wall peptidoglycan was ll-diaminopimelic acid. The predominant menaquinones were MK-9(H6), MK-9(H4) and MK-9(H8). Polar lipids detected were a lipid, an aminolipid, a phospholipid, phosphatidylinositol, phosphatidylethanolamine and two glycolipids. The predominant cellular fatty acids (>10.0 %) were anteiso-C15 : 0 (20.8 %), iso-C16 : 0 (18.0 %), iso-C15 : 0 (12.2 %) and anteiso-C17 : 0 (11.6 %). The whole-cell sugars were ribose, glucose and mannose. These results suggested that MUSC 135(T) should be placed within the genus Streptomyces. Phylogenetic analysis based on the 16S rRNA gene sequence exhibited that the most closely related strains were Streptomyces cinereospinus NBRC 15397(T) (99.18 % similarity), Streptomyces mexicanus NBRC 100915(T) (99.17 %) and Streptomyces coeruleofuscus NBRC 12757(T) (98.97 %). DNA-DNA relatedness between MUSC 135(T) and closely related type strains ranged from 26.3±2.1 to 49.6±2.5 %. BOX-PCR fingerprint comparisons showed that MUSC 135(T) exhibited a unique DNA profile. The DNA G+C content determined was 70.7±0.3 mol%. Based on our polyphasic study of MUSC 135(T), the strain merits assignment to a novel species, for which the name Streptomyces pluripotens sp. nov. is proposed. The type strain is MUSC 135(T) ( = MCCC 1K00252(T) = DSM 42140(T)).
    Matched MeSH terms: Vitamin K 2/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links