Displaying all 2 publications

Abstract:
Sort:
  1. Abdullah AA, Altaf-Ul-Amin M, Ono N, Sato T, Sugiura T, Morita AH, et al.
    Biomed Res Int, 2015;2015:139254.
    PMID: 26495281 DOI: 10.1155/2015/139254
    Volatile organic compounds (VOCs) are small molecules that exhibit high vapor pressure under ambient conditions and have low boiling points. Although VOCs contribute only a small proportion of the total metabolites produced by living organisms, they play an important role in chemical ecology specifically in the biological interactions between organisms and ecosystems. VOCs are also important in the health care field as they are presently used as a biomarker to detect various human diseases. Information on VOCs is scattered in the literature until now; however, there is still no available database describing VOCs and their biological activities. To attain this purpose, we have developed KNApSAcK Metabolite Ecology Database, which contains the information on the relationships between VOCs and their emitting organisms. The KNApSAcK Metabolite Ecology is also linked with the KNApSAcK Core and KNApSAcK Metabolite Activity Database to provide further information on the metabolites and their biological activities. The VOC database can be accessed online.
    Matched MeSH terms: Volatile Organic Compounds/classification
  2. Othman A, Goggin KA, Tahir NI, Brodrick E, Singh R, Sambanthamurthi R, et al.
    BMC Res Notes, 2019 Apr 16;12(1):229.
    PMID: 30992056 DOI: 10.1186/s13104-019-4263-7
    OBJECTIVE: The addition of residual oils such as palm fibre oil (PFO) and sludge palm oil (SPO) to crude palm oil (CPO) can be problematic within supply chains. PFO is thought to aggravate the accumulation of monochloropropanediols (MCPDs) in CPO, whilst SPO is an acidic by-product of CPO milling and is not fit for human consumption. Traditional targeted techniques to detect such additives are costly, time-consuming and require highly trained operators. Therefore, we seek to assess the use of gas chromatography-ion mobility spectrometry (GC-IMS) for rapid, cost-effective screening of CPO for the presence of characteristic PFO and SPO volatile organic compound (VOC) fingerprints.

    RESULTS: Lab-pressed CPO and commercial dispatch tank (DT) CPO were spiked with PFO and SPO, respectively. Both additives were detectable at concentrations of 1% and 10% (w/w) in spiked lab-pressed CPO, via seven PFO-associated VOCs and 21 SPO-associated VOCs. DT controls could not be distinguished from PFO-spiked DT CPO, suggesting these samples may have already contained low levels of PFO. DT controls were free of SPO. SPO was detected in all SPO-spiked dispatch tank samples by all 21 of the previously distinguished VOCs and had a significant fingerprint consisting of four spectral regions.

    Matched MeSH terms: Volatile Organic Compounds/classification
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links